
Hardware-Embedded Pointing Transfer Function Capable of
Canceling OS Gains

Seonho Kim
Yonsei University

Seoul, Republic of Korea
cogbrain18@yonsei.ac.kr

Munjeong Kim
DGIST

Daegu, Republic of Korea
moondoong@dgist.ac.kr

Jonghyun Kim
Yonsei University

Seoul, Republic of Korea
truejong1@yonsei.ac.kr

Donghyeon Kang
Yonsei University

Seoul, Republic of Korea
car991231@yonsei.ac.kr

Sunjun ∗ Kim

DGIST
Daegu, Republic of Korea
sunjun_kim@dgist.ac.kr

Byungjoo ∗ Lee

Yonsei University
Seoul, Republic of Korea

byungjoo.lee@yonsei.ac.kr

Device

Device

Sensor

Custom Gain in
Physical Unit

Control

Control

Sensor

OS

OS

Count

Count, CPI, Polling Rate

-1

Define Native
Gain

Native
Gain

Pointer

Pointer

Conventional Technique Our Technique

User

User

Native
Gain ˜°°°°°°˛

Figure 1: (Left) conventional pointing transfer function method, (Right) hardware-embedded transfer function method

Abstract
When using indirect pointing devices in modern operating systems
(OS), users’ perception of the pointing transfer function is easily
influenced by the device’s hardware or OS-native transfer function
settings. This could hinder users from finding and fully adapting to
the transfer function that is optimal for them. We propose a novel
hardware-embedded transfer function technique that is expected
to allow users to consistently experience the desired function even
when device hardware or OS settings change. The technique (1) al-
lows users to define the desired function within the device firmware
in physical units and (2) enables the firmware to cancel out the in-
fluence of OS-native functions and hardware setting perturbations,
so that the uploaded function can persist regardless of the external
environment. Through technical evaluation including transfer func-
tions of various shapes, we showed that the proposed technique has
comparable robustness and accuracy to the conventional approach.

CCS Concepts
• Human-centered computing → Pointing devices.

Keywords
Esports, Pointing, Gain Function, Fitts’ Law

∗Co-corresponding authors

This work is licensed under a Creative Commons Attribution 4.0 International License.
CHI ’25, Yokohama, Japan
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1394-1/25/04
https://doi.org/10.1145/3706598.3714076

ACM Reference Format:
Seonho Kim, Munjeong Kim, Jonghyun Kim, Donghyeon Kang, Sunjun Kim,
and Byungjoo Lee. 2025. Hardware-Embedded Pointing Transfer Function
Capable of Canceling OS Gains. In CHI Conference on Human Factors in
Computing Systems (CHI ’25), April 26–May 01, 2025, Yokohama, Japan. ACM,
New York, NY, USA, 15 pages. https://doi.org/10.1145/3706598.3714076

1 Introduction
When using indirect pointing devices such as a mouse or trackpad,
a pointing transfer function determines the relationship between
the physical speed of the device 𝑠𝑑 and the speed at which the
pointer moves on the screen 𝑠𝑝 [2, 12]. If we compute the ratio
of two speeds at a particular time 𝑡 , that is the pointing gain 𝐺
(=𝑠𝑝 /𝑠𝑑), and pointing transfer functions are therefore also called
gain functions [7, 19]. An acceleration gain function increases the
gain as the device speed increases, while a constant gain function
maintains the gain regardless of the device speed [6].

Pointing transfer function design has a significant impact on
on-screen target acquisition performance [6]; providing a gain that
is neither too high nor too low [1, 6] and providing an acceleration
function rather than a constant function can result in higher perfor-
mance [6, 12]. Meanwhile, pointing behaviors can vary significantly
depending on users’ cognitive and physical characteristics and mo-
tivational states (e.g., speed-accuracy bias) [3], so there may not
be a single transfer function that satisfies all interaction scenarios
and all users [12]. Accordingly, most operating systems (OS) today
allow users to select from a number of transfer function presets
(accelerated or constant) with different levels, rather than providing
a single fixed function (see Figure 2).

https://orcid.org/0009-0003-6267-8407
https://orcid.org/0009-0003-4120-5838
https://orcid.org/0000-0001-6956-3440
https://orcid.org/0009-0002-2261-6925
https://orcid.org/0000-0002-4310-4817
https://orcid.org/0009-0003-1547-9923
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3706598.3714076
https://doi.org/10.1145/3706598.3714076
https://byungjoo.lee@yonsei.ac.kr
https://truejong1@yonsei.ac.kr
https://sunjun_kim@dgist.ac.kr
https://moondoong@dgist.ac.kr
https://car991231@yonsei.ac.kr
https://cogbrain18@yonsei.ac.kr
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3706598.3714076&domain=pdf&date_stamp=2025-04-25

CHI ’25, April 26–May 01, 2025, Yokohama, Japan Seonho Kim, Munjeong Kim, Jonghyun Kim, Donghyeon Kang, Sunjun Kim, and Byungjoo Lee

macOS Windows Linux

Acceleration on/off
Acceleration on/off

Acceleration on/off

Figure 2: Pointing transfer function customization options
in modern OSs

While previous studies [2, 6, 12, 15] have mainly focused on the
design of transfer functions in general office interaction scenarios
with moderate performance pressure, in this study we critically
examine how modern transfer functions can support users who aim
for extreme level of performance. Consider professional athletes in
desktop competitive video games (i.e., esports) [5, 11, 13, 17, 22];
competitions between those athletes are highly active today, with
millions of dollars in prize money and millions of viewers around
the world. Unlike everyday interactions in the office, even a slight
performance deficit can result in a critical defeat in competitive
video games, so they are looking for a more suitable game setting
that can boost their performance even a little [9, 13, 17].

For example, recent studies [14, 21] showed that competitive
video game players turn off most of the graphical options because it
allows them to reduce latency through a small increase in frame rate
[20], and improve enemy recognition through a small reduction in
visual clutter [18]. Our main question in this study, then, is: What
pointing transfer function features should be available to users who
seek maximum input performance and welcome even the smallest
performance improvements?

The first desired feature is probably the maximum level of cus-
tomizability to accommodate the different physical and cognitive
characteristics and motivational states of users. The pointing trans-
fer function is a continuous function of the device speed 𝑠𝑑 and can
therefore be determined in infinitely many different ways. If the
user could draw the function shape directly or define it as a cubic
spline based on a few control points, it would be easy for the user
to explore and find the function that best suits them. However, no
OS or device provides such a feature yet. Currently, users can only
passively select one of about 20 transfer functions in a form prede-
fined by the OS [2]. This may have led to a culture where serious

Figure 3: Websites that allow anyone to reference the mouse
settings of professional esports athletes

gamers today simply follow the recommendations or settings of
other players [17] rather than spending enough time exploring the
transfer function that suits them (see Figure 3).

The second desired feature is that the transfer function designed
by users should be sustainable over a long period of time without be-
ing disturbed by external factors until users are sufficiently trained
on it. However, a feature of modern computing environments [7]
makes this feature difficult to provide: the OS-native transfer func-
tions available today are defined as functions of logical counts
rather than physical speed units (e.g., 𝑚/𝑠). This causes users to
experience a completely different transfer function in physical units
if the hardware settings of the device, such as sensor sensitivity
(i.e., counts per inch, CPI) or polling rate (in Hz), change for any
reason (see Figure 4). Figure 6 illustrates how the gain function
that users actually experience in physical units changes under each
condition of OS-native constant, linear acceleration, and nonlinear
acceleration gain function when the CPI and polling rate of the
indirect pointing device are changed. In particular, if the OS native
function is set as an accelerated one, the overall scale and shape of
the perceived gain function is disrupted by both CPI and polling rate
[7], which we speculate may be the reason why professional video
gaming athletes do not use the accelerated function [1, 4] despite
its performance benefits observed in previous studies [6, 12].

We could wait for modern OSs to provide transfer function fea-
tures that can support high-performance users [7], but in this study,
we would like to preemptively suggest a solution that is more
immediate and independent of existing OSs (see Figure 1). More
specifically, we propose to upload the following two components
to the firmware of the device: (1) a transfer function defined in
physical units that can be fully customized by users, and (2) an algo-
rithm that cancels out the influence of OS-native transfer functions
and hardware setting perturbations, so that the uploaded transfer
function can persist regardless of the external environment. With
input devices equipped with this solution, users can experience the
desired transfer function by simply plugging in the input device
into most modern computing environments, regardless of OS, CPI,
or polling rate settings. Our proposed solution is realized in this
study based on a custom computer mouse equipped with a fully pro-
grammable chip1 . In a full-factorial technical evaluation performed
on two CPIs, two polling rates, and six OS-native transfer functions,
we demonstrate that the proposed technique can realize a variety
of targeted transfer functions while maintaining robustness and
accuracy comparable to the conventional system.

2 Background and Related Work

2.1 Comparison with Existing Solutions
Several previous studies [2, 7] in HCI have also criticized the way
pointing transfer functions are defined and used today. Those stud-
ies have focused on scientific replicability issues in HCI research
rather than considering the needs of high-performance users. Ac-
cording to those studies, in order for user experiments using OS-
native transfer functions (defined in logical units) to be replicated,

1Our proposed solution is lightweight enough to be integrated into the firmware of
existing gaming mice, but in this study we chose not to hack existing devices in order
to achieve a transparent and controllable implementation.

Hardware-Embedded Pointing Transfer Function Capable of Canceling OS Gains CHI ’25, April 26–May 01, 2025, Yokohama, Japan

Monitor

648 px Pointer
displacement

Monitor

422 px

Monitor

1715 px

800 Counts

Desk

1 inch Mouse
displacement

 400 CountsHID Report:
400 Counts

6.25 inches / s

400 CPI
125 Hz

400 CPI
250 Hz

800 CPI
125 Hz

Figure 4: As noted by Hanada et al. (2021) [7], even with the same physical mouse movement, the resulting pointer displacement
can vary significantly depending on mouse device settings. In this case, a mouse moved 1 inch at a constant speed of 6.25 inches
per second over 160 ms (the mouse sensitivity slider set to tick 6 with "Enhance Pointer Precision" enabled in Windows)

libpointing Closest Tool Raw Accel

Figure 5: Existing transfer function solutions: (left) libpointing, (middle) Closest tool, (right) Raw Accel

the resolution of the display and hardware settings must all be ex-
plicitly stated in the paper, which is not common. This is essentially
the same story as our concern that the transfer function experi-
enced in physical units is easily disturbed by external factors [7],
making it difficult for high-performance users to sufficiently adapt
to the desired function.

To address the replicability problem, two solutions have been
proposed. (see Figure 5). The first is to bypass the OS-native trans-
fer function by using system APIs such as RAWINPUT which
allow intercepting the native mouse events from the device be-
fore the system transfer function is applied. Through this method,
libpointing library released in 2011 [2] successfully implemented
various custom transfer functions independently from the OS-
native transfer functions. However, this method still does not com-
pletely prevent unintended disturbances in hardware settings from
significantly affecting users’ transfer function experience because
the device’s CPI or polling rate must be manually notified to the soft-
ware. It also has limited control over the position of the pointer be-
cause in Windows, it alters SmoothMouseXCurve and SmoothMouse
YCurve registry values to apply the customized transfer function,
but it only has four control points, which cannot faithfully apply
the desired shape of the function. Instead, it may be possible to fully
control the pointer using an OS API like SetCursorPos [12], but

many games block software-based pointer control APIs due to se-
curity issues or allow only internal raw input channels2 . Therefore,
we believe that the solution is difficult to use for high-performance
users. The hassle of having to pre-install the library also makes it
difficult to use widely.

The second solution, called Closest tool [7], is to suggest to
users how the OS-native function should be set (e.g., which tick on
the slider to select) to get the most similar experience to a desired
transfer function defined in physical units. However, this approach
still burdens users with installing separate software and manually
notifying the system of changes in their computing environment
or device settings. Furthermore, it does not allow for sufficient
customization of transfer functions to satisfy high-performance
users who cannot find what they want among the small number of
predefined OS-native functions.

Meanwhile, outside of the realm of HCI research, in the video
game community, a tool called Raw Accel 3 has been developed
with a goal closer to ours: supporting high-performance users. The
tool manipulates HID reports coming from input devices through
a low-level kernel driver to implement a desired transfer function.

2Popular games like: Apex Legends, PUBG, Call of Duty, Call of Duty: Warzone
3https://github.com/a1xd/rawaccel

https://github.com/a1xd/rawaccel

CHI ’25, April 26–May 01, 2025, Yokohama, Japan Seonho Kim, Munjeong Kim, Jonghyun Kim, Donghyeon Kang, Sunjun Kim, and Byungjoo Lee

C
P

I
P

er
tu

rb
at

io
n

OS-Native Function Type
P

ol
lin

g
R

at
e

P
er

tu
rb

at
io

n

40
0

C
P

I
80

0
C

P
I

25
0

H
z

16
00

 C
P

I
12

5
H

z
25

0
H

z

80
0

C
P

I

50
0

H
z

Gain Function Experienced (in Physical Unit)

Figure 6: We calculate and illustrate how the gain function in physical units changes under different OS-native gain func-
tions—constant, linear acceleration, and nonlinear acceleration—by varying the CPI and polling rate of the indirect pointing
device. For the constant type, the scale changes with CPI. For the linear acceleration type, both scale and shape change with
CPI. For the nonlinear acceleration type, both scale and shape change with CPI, and they also change with polling rate.

Hardware-Embedded Pointing Transfer Function Capable of Canceling OS Gains CHI ’25, April 26–May 01, 2025, Yokohama, Japan

Table 1: Comparison of the transfer function technique proposed in this study with existing solutions

Technique Hardware Setting Customizability Additional Software Anti-Cheat Block

Compensation Possibility

libpointing [2] Manual High Needed High4

Closest [7] Manual Low Needed Low

Raw Accel Manual High Needed Medium

Ours Automatic High Unneeded Low

This allows users to be relatively free from security blocking issues
compared to tools that rely on high-level system APIs. However, the
tool still requires users to install separate software, perform manual
calculations to compensate for the effects of input device settings,
and may be blocked by more sophisticated anti-cheat mechanisms.
Additionally, the fact that Raw Accel cannot work on OSs other
than Windows prevents it from being a universal solution for high-
performance users.

Unlike previous solutions, the transfer function technique pro-
posed in this study can automatically respond to hardware setting
changes because all processes are implemented within the hard-
ware firmware. Furthermore, it allows full customization of transfer
functions regardless of the type of OS without installing separate
software or libraries. Finally, since the signals from the input de-
vice equipped with our solution are indistinguishable from the
signals from conventional devices from the system’s perspective,
our solution can be widely adopted in applications that impose
some restrictions on the pointer control mechanism. Table 1 further
highlights the differences between ours and the existing ones.

2.2 Preliminary Survey with Serious Gamers
The main motivation for this study is that today’s OS-native transfer
functions do not satisfy high-performance users. To support this
claim, we conducted a preliminary survey of 17 serious gamers
(𝜇=15.94 years, 𝜎 =2.39). All survey participants were players of first-
person shooters (FPS, 𝑁 =12) or multi-player online battle arena
(MOBA, 𝑁 =5) games whose primary input device was a computer
mouse, and were randomly recruited from a local esports academy.
One of the participants was a current professional esports athlete,
and two were trainees aiming for a professional debut. The in-game
tiers of the remaining participants were one in the top 0.2%, four in
the top 2%, eight in the top 12%, and one in the top 35%. Participants
were compensated with a gift worth 4 USD. The survey consisted
of 44 questions that investigated the overall experience related to
mouse use, of which seven questions were directly related to the
motivation of this study. The survey results for those questions are:
• Q1. Are you using an acceleration pointing transfer function?
(Yes: 3 / 17.6%)
• Q2. Do you think your gaming skills deteriorate if you use a
mouse that you don’t normally use? (Yes: 15 / 88.2%)
• Q3. Do you think different game genres require different mouse
settings? (e.g., CPI) (Yes: 13 / 76.5%)

4Since libpointing has limited ability to apply a custom OS-level transfer function,
application-level mouse message injection is required to have full control of the cursor,
which has a higher chance of being filtered by an anti-cheat detector.

• Q4. Do you need different mouse settings (e.g., CPI) depending
on the type of character or weapon you control in the game?
(Yes: 5 / 29.4%)
• Q5. Have you ever tried to mimic another player’s mouse set-
tings? (Yes: 11 / 64.7%)
• Q6. Have you ever wanted more control over the transfer func-
tion of your mouse? (Yes: 9 / 52.9%)
• Q7. Please select all the features below that you think are neces-
sary but not present in today’s gaming mice (transfer function
optimization: 13, 76.5%)

In summary, these results support our claim that modern pointing
transfer functions need to be significantly improved to satisfy high-
performance users. Serious gamers want to be able to fine-tune
their pointing transfer function (Q3, Q4, Q6) and seem to be highly
interested in finding the optimal device settings that best suit them
(Q2, Q5, Q7). Despite the general advantages of the acceleration
function, we confirm once again that it is hardly used (Q1), probably
because an acceleration function can be more severely disturbed
by changes in CPI or polling rate than a constant function.

2.3 Pointing Transfer Function for Gamers
For enthusiastic gamers, especially in FPS games, the general con-
sensus of mouse settings is probably to "turn off mouse acceleration",
which refers to a constant CD gain setting [1, 4]. The reason for
this is probably to get rid of an extra variable – see Figure 6 for
how easily nonlinear acceleration functions can be perturbed by
external variables – to develop consistent muscle memory, which
is crucial for better aiming performance. In particular, competitive
FPS players have avoided the non-linear transfer function, who
often use open-loop targeting strategies and rely on muscle mem-
ory for better repeatability of the action [1]. For precise movement,
low gain is preferred [17], but because of the constant gain, they
require a large mouse pad mousepad and large motion for specific
actions such as a quick 180 degree turn in FPS games.

While constant gain is preferred, attempts to apply nonlinear
transfer functions have been advocated by a subset of gamers. If
gamers could make a consistent open-loop action with the acceler-
ation transfer functions, they could have the best of both worlds:
slow and precise movement, and fast and large sweep. The com-
munity has shown significant interest in a customizable transfer
function. For example, Raw Accel GitHub repository has 200+ forks
and 1.8k stars (as of late 2024), and a YouTube video5 about how to
set up proper transfer function for Valorant gameplay gained nearly
1 million views in less than two years. A variety of custom transfer

5https://www.youtube.com/watch?v=u9auSOa3Hb0

https://www.youtube.com/watch?v=u9auSOa3Hb0

CHI ’25, April 26–May 01, 2025, Yokohama, Japan Seonho Kim, Munjeong Kim, Jonghyun Kim, Donghyeon Kang, Sunjun Kim, and Byungjoo Lee

Figure 7: The custom-built mouse hardware design: Only the signal from front sensor was used in this study.

functions have been tried, such as jump curve, linear curve, power
curve, and exponential curves [16]. The most prominent approach
may be a two-step approach, which maintains a constant gain at
low speeds and applies an increased gain after a speed threshold.

In summary, while academic research has demonstrated the per-
formance benefits of non-linear transfer functions, particularly
mouse acceleration (increased gain at higher speeds) in general
office scenarios [3, 6, 12, 15, 19], their advantages have not been
thoroughly evaluated in high-performance gaming contexts. We
believe that the absence of a sustainable and sufficiently customiz-
able transfer function technique has contributed significantly to
this, and we hope that this study’s technique can be useful in future
studies on transfer function design for high-performance users.

3 Technique Implementation

3.1 Overview
Our transfer function technique is implemented directly in the
firmware of an input device hardware. Among various indirect
pointing devices, we demonstrate our technique on a computer
mouse, the most widely used input device in competitive video
games today [8]. To do this, rather than hacking the firmware
of an existing commercial mouse, we decided to create a mouse
hardware that we can fully control ourselves. This allows for a more
rigorous technical evaluation that minimizes the influence of any
possible confounding variables. The following sections describe
the mouse hardware we implemented in detail, followed by the
firmware uploaded to it.

3.2 Custom Mouse Hardware
The custom mouse used in this study was created based on 3D
printer drawings and Arduino source code that were released as
open source on the web6 . The resources are basically for those who
want to implement a dual-sensor mouse, a special mouse with two
optical sensors, and have been usefully utilized in recent HCI studies
[8, 10, 17]. We implemented the dual-sensor mouse according to the
guide and used only one of the two sensors, which is closer to the
fingertip (see Figure 7). The total cost of producing one dual-sensor
mouse in this study was about 100 USD [8]. Considering that gam-
ing mice costing several hundred dollars are popular on the market
today, this is affordable for serious gamers to make one themselves.

6https://github.com/SunjunKim/DualSensorMouse

The following sections describe the hardware specifications of the
mouse in more detail.

3.2.1 Mouse Shell. The mouse shell shape mimics the Logitech G
Pro Wireless, which is one of the most popular model for gamers.
The shell was printed using a low-cost FDM printer (Bambu Lab
X1-Carbon) in PLA material.

3.2.2 Optical Sensor. For the sensor, we used PixArt PMW3389DM-
T3QU optical mouse sensor. The sensor has a maximum resolution
of 16,000 CPI (count per inch), a tracking rate of 12,000 frames per
second, and a tracking speed of up to 400 IPS (inch per second) with
50G acceleration. The PMW3389 sensor is featured in high-end
gaming mice such as the Razer DeathAdder Elite and the Cooler-
master MM710, and has been widely praised by competitive gamers
for its performance.

3.2.3 Microprocessor. As the brain of the mouse, the Espress ESP32-
S3 microprocessor handles sensor reading and communication with
the host computer. The ESP32-S3 is a powerful microcontroller with
a dual-core Xtensa LX7 CPU clocked at 240 MHz, 512 KB SRAM and
4 MB flash memory. It also features a native USB interface, which
is ideal for a mouse application. This is a 32-bit RISC architecture
microprocessor, similar to other MCUs for gaming mice on the
market today in 2024 (e.g., Nordic nRF52840, nRF52833, etc.).

3.2.4 Firmware. We implemented the mouse driving firmware on
Arduino IDE. The MCU reads the sensor displacement values from
PWM3389 devices via SPI communication, processes sensor data,
and sends the USB HID (human interface device) report to the
host computer. To facilitate an advanced function, the USB HID
descriptor was extended to report the X and Y displacements in 16-
bit (instead of the standard 8-bit), covering the range from -32,768
to 32,767 counts. Debug and log messages are sent separately to
the host computer via the USBCDC library, which acts as a virtual
serial device. The device could run up to 1,000 Hz polling rate
(bInterval=1 in a full-speed USB device), and we simulated the
other polling rates by adding artificial delay in the loop.

3.3 Hardware-Embedded Pointing Transfer
Function Defined in Physical Units

In our solution, let us denote the pointing gain function that users
want to experience as 𝐺 (), where 𝐺 () is defined as a function of
the physical speed 𝑣 (i.e., in 𝑚/𝑠 unit) that the mouse translates

https://github.com/SunjunKim/DualSensorMouse

Hardware-Embedded Pointing Transfer Function Capable of Canceling OS Gains CHI ’25, April 26–May 01, 2025, Yokohama, Japan

array elements
Desired gain function

Figure 8: The way a custom desired gain function 𝐺 (𝑣) is defined and uploaded to the firmware as an array AG in our technique

over the desk surface. Then, the speed of the pointer movement on
the screen 𝑠 (i.e., in 𝑝𝑥 /𝑠 unit7) at the instant when the mouse is
moving at speed 𝑣 should be determined as follows:

𝑠 = 𝐺 (𝑣) · 𝑣 (1)

Note that the unit of gain 𝐺 (𝑣) in this formulation is 𝑝𝑥 /𝑚. We
assume that this desired gain function is discretized and uploaded
to the firmware via serial communication. More specifically, if the
theoretical maximum physical speed of the mouse is 𝑣max, the gain
function discretized into 𝑁 points is uploaded to the firmware as
the following array:

 2AG = [𝐺 (0 𝑣max) 𝐺 (𝑣max
,), 𝐺 (), · · · , 𝐺 (𝑣max)] (2)

𝑁 𝑁

In this study, 𝑣max was determined to be 1 𝑚/𝑠 , referring to previous
studies [2, 12]. 𝑁 was set to 100 so that the transfer function could
be customized in sufficient detail (see Figure 8).

The physical speed of the mouse 𝑣 can be precisely estimated
by analyzing the optical sensor readings. If the polling rate of the
mouse is expressed as 𝑃 (in Hz), then mouse sensor readings are
obtained every 1/𝑃 seconds. If the values of the 𝑖 -th sensor reading
are assumed to be 𝑐𝑥𝑖 and 𝑐𝑦𝑖 in the 𝑥 and 𝑦 axes of the sensor (unit:
counts), respectively, then the estimated speed of the mouse 𝑣𝑖 at
that moment is calculated as follows: √︃

2𝑃 𝑐𝑥 2+𝑖 𝑐𝑦
𝑣𝑖 = 0.0254

𝑖
 · (3)

𝐶𝑃 𝐼

Here, 𝐶𝑃𝐼 is the sensitivity setting of the mouse at the time the
sensor reading was created, and 0.0254 is a proportional constant
introduced to convert inches to meters. Finally, the gain 𝐺𝑖 to be
applied to the 𝑖 -th sensor reading (𝑐𝑥𝑖 , 𝑐𝑦𝑖) is the linearly interpo-
lated value at the fractional index corresponding to 𝑣𝑖 in the array
of gains in Equation 2. If 𝑣𝑖 is greater than 𝑣max, 𝐺𝑖 is simply set to
𝐺 (𝑣max).

According to the definition of the gain function in Equation
1, the pointer speed on the screen 𝑠𝑖 that should be generated
correspondingly from the 𝑖 -th sensor reading is as follows:

𝑠𝑖 = 𝐺𝑖 · 𝑣𝑖 (4)

7We use 𝑝𝑥/𝑠 here because the size of screen elements is defined in pixels and manip-
ulated by a pointer with pixel-level precision. In this case, we believe that defining
the pointer speed in physical units is less meaningful because the physical screen size
can vary while maintaining a field of view (FoV) similar to the eyes (e.g., the same
screen content rendered on a laptop screen, desktop monitor, and projector at different
distances). Further rationale will be presented in the Discussion and Limitation section.

Since each sensor reading occurs over a period of 1/𝑃 , if we want
to move the pointer at an average speed of 𝑠𝑖 as above, the corre-
sponding displacement of the pointer 𝑑𝑖 on the screen must be:

𝑑𝑖 =
𝑠𝑖

𝑃
(5)

From the equations presented above, we were able to understand
how much the pointer should be displaced on the screen for each
sensor reading to realize the gain function 𝐺 desired by users. In
particular, since the influence of hardware settings such as CPI or
polling rate is automatically compensated internally in the firmware
(Equation 3), if the above equations can be actually implemented,
users can always experience the same transfer function in physical
units regardless of hardware setting perturbations.

3.4 OS Gain Cancellation
The process by which the pointer is moved in today’s OSs is as
follows. First, for the 𝑖 -th sensor reading step, the input device sends
an Human Interface Devices (HID) report in the form of an integer
vector ℎ𝑖 = (ℎ𝑥𝑖 , ℎ𝑦𝑖) to the OS through USB Bus. Next, the OS
calculates the magnitude of the report |ℎ𝑖 | and multiplies it by the
corresponding OS-native gain 𝐺OS to determine the required pixel
displacement (Δ𝑥𝑖 , Δ𝑦𝑖) of the pointer. Finally, the displacement is
reflected in the pointer position on the screen. The relationship
between the pointer displacement vector and the HID report vector
is expressed as follows:

(Δ𝑥𝑖 , Δ𝑦𝑖) = 𝐺OS (|ℎ𝑖 |) · (ℎ𝑥𝑖 , ℎ𝑦𝑖) (6)

One thing to note here is that depending on the OS, the native
gain function may compute the magnitude of the HID report it
takes as input in a way other than the familiar Euclidean norm.
For example, on Windows, |ℎ𝑖 | is computed in a unique way:

Sensor reading

HID report

Figure 9: Sensor reading and HID report should be parallel
to avoid jittering

CHI ’25, April 26–May 01, 2025, Yokohama, Japan Seonho Kim, Munjeong Kim, Jonghyun Kim, Donghyeon Kang, Sunjun Kim, and Byungjoo Lee

K= K= K= K= ...

˜
K=

...

Figure 10: The process of of obtaining the array A𝑥

max(ℎ𝑥𝑖 , ℎ𝑦𝑖) + min(ℎ𝑥𝑖 , ℎ𝑦𝑖)/2 [2]. In this study, we assume that
all magnitude expressions written in the 𝐺OS function represent
magnitudes computed according to the method of the target OS.

We assume that 𝐺OS is uploaded to the mouse in the form of an
array, just like the user-defined gain 𝐺 . This is a possible assumption,
since the native transfer functions of most OSs have already been
precisely measured in previous studies and made public [2]. If we
denote the maximum HID report magnitude we consider as ℎmax,
the 𝐺OS array is expressed as follows:

AOS = [𝐺OS (0
ℎmax), 𝐺OS (2ℎmax),

𝐺OS (), · · · , 𝐺OS (ℎmax)] (7)
𝑁OS 𝑁OS

The divisor 𝑁OS is set to 1,000, 𝐺OS (0) is simply assumed to be 0,
and ℎmax was set to 500.

In the previous section, we derived the on-screen pointer dis-
placement 𝑑𝑖 that should occur from the 𝑖-th sensor reading, which
should be related to (Δ𝑥𝑖 , Δ𝑦𝑖) and 𝐺OS as follows: √︃

2𝑑𝑖 = Δ𝑥 2+𝑖 Δ𝑦
𝑖 = 𝐺OS (|ℎ𝑖 |) · |ℎ𝑖 | (8)

If we can find ℎ𝑖 that satisfies the above equation, we can realize
the desired pointer movement 𝑑𝑖 .

To avoid users noticing directional jittering in pointer movement,
(ℎ𝑥𝑖 , ℎ𝑦𝑖) should always be set parallel to the sensor reading 𝑐𝑖 =
(𝑐𝑥𝑖 , 𝑐𝑦𝑖). As a result, (ℎ𝑥𝑖 , ℎ𝑦𝑖) should always be determined by
multiplying (𝑐𝑥𝑖 , 𝑐𝑦𝑖) by a constant 𝑘𝑖 , as follows (see Figure 9):

(ℎ𝑥𝑖 , ℎ𝑦𝑖) = 𝑘𝑖 · (𝑐𝑥𝑖 , 𝑐𝑦𝑖) (9)

Here, (𝑐𝑥𝑖 , 𝑐𝑦𝑖) are known values measured from the sensor and
𝑘𝑖 is an unknown value that we need to determine for each 𝑖 -th
sensor reading. According to the Equation above, if the magnitude
of (𝑐𝑥𝑖 , 𝑐𝑦𝑖) computed by the OS-specific method is |𝑐𝑖 |OS, and the
Euclidean norm of (𝑐𝑥𝑖 , 𝑐𝑦𝑖) is |𝑐𝑖 |E, Equation 8 can be reformulated
as follows:

𝑑𝑖 = 𝐺OS (𝑘𝑖 · |𝑐𝑖 |OS) · 𝑘𝑖 · |𝑐𝑖 |E (10)

If we substitute 𝑘𝑖 · |𝑐𝑖 |OS with 𝑥 , the solution to Equation 10 is
basically the 𝑥 -coordinate of the intersection point between the

following two functions on the 𝑥𝑦 coordinate plane:

𝐾 |𝑐 |OS
𝑦 = 𝑖 𝑑𝑖

𝑓1 (𝑥) = and 𝑦 = 𝑓2 (𝑥) = 𝐺OS (𝑥) where 𝐾 =
𝑥 |𝑐𝑖 |E

(11)

To solve this, we apply a computational method. First, we gradually
increase 𝑥 from 0 in small intervals and find the point where the
sign of (𝑓1 (𝑥)−𝑓2 (𝑥)) changes. In this process, 𝐺OS for 𝑥 was linearly
interpolated if it did not exist in the array of Equation 2.

If 𝑥 before the sign change is 𝑥1 and 𝑥 after the sign change is 𝑥2,
we obtain the 𝑥 -coordinate of the intersection point between the
line segment connecting the points [𝑥1, 𝑓1 (𝑥1)] and [𝑥2, 𝑓1 (𝑥2)] and
the line segment connecting the points [𝑥1, 𝑓2 (𝑥1)] and [𝑥2, 𝑓2 (𝑥2)]
as the final solution to Equation 11 (see Figure 10).

If the solution of Equation 8 obtained for a particular 𝐾 is 𝑥∗ 𝐾 ,
we upload the following array to the firmware:

∗ ∗ ∗ ∗ A𝑥 = [𝑥 , 𝑥 𝐾 · , 𝑥 ·max 2𝐾max , · , 0 𝑥] 𝐾max
(12)

𝑁𝑑 𝑁𝑑

Here, 𝐾max is the maximum value of the desired 𝐾 , which is set to
500, sufficiently large. The divisor 𝑁𝑑 is also set to 1,000. However,
if the overall magnitude of the OS-native gain is very low, the
intersection may occur at very large 𝑥 , and as a result, 𝐾max may have
to be increased further. The 𝑥∗ 0 , which represents the intersection
of 𝑦 = 0 and 𝑦 = 𝐺OS (𝑥), was assumed to be 0 because 𝐺OS (0) was
also assumed to be 0 (see Equation 7).

Once we have uploaded the three arrays AG, AOS, A𝑥 , we are
ready to cancel out the impact of that OS-native gain and move
the pointer as we want, simply by controlling the HID report sent
by the device firmware, without installing any additional client
software. We assume that we have precomputed [AOS, A𝑥] array
pairs for all native function settings of a particular OS. In this study,
we have verified that the memory size of our custom mouse (512
KB) allows us to store in the firmware the [AOS, A𝑥] array pairs
computed for all 22 native settings of Windows. The next section
presents the final algorithm on how the firmware actually generates
HID reports and manages remainders based on all the uploaded
information.

Hardware-Embedded Pointing Transfer Function Capable of Canceling OS Gains CHI ’25, April 26–May 01, 2025, Yokohama, Japan

Firmware
Floor

function

Sensor

Pointer

OS Remainder

Polling Rate

CPI

Figure 11: Block diagram of the proposed algorithm

3.4.1 HID Reporting Algorithm. This section describes in chrono-
logical order the process by which the firmware creates a HID
report (ℎ𝑥, ℎ𝑦). First, the firmware calculates the desired pointer
displacement 𝑑𝑖 from the 𝑖 -th sensor reading using Equation 3 to 5.
Then, the firmware calculates the desired pointer movement vector
(Δ𝑥𝑖 , Δ𝑦𝑖) parallel to the sensor reading vector (𝑐𝑥𝑖 , 𝑐𝑦𝑖) as follows:

𝑑𝑖 (Δ𝑥𝑖 , Δ𝑦𝑖) ← (𝑐𝑥 𝑦
𝑐𝑥 , 𝑐𝑦 𝑖 , 𝑐 𝑖) (13) | (𝑖 𝑖) |E

If the remainder of the pointer movement vector that could not be
processed in the previous sensor reading is (Δ𝑥𝑟 , Δ𝑦𝑟), it is added
to Δ𝑥𝑖 and Δ𝑦𝑖 to be processed in the current step:

𝑑𝑖(Δ𝑥𝑖 , Δ𝑦𝑖) ← (𝑐𝑥𝑖 , 𝑐𝑦𝑖) + (Δ𝑥𝑟) (14) | (𝑐𝑥𝑖 , , Δ𝑦
𝑐𝑦

𝑟
𝑖) |E

The firmware then updates the desired pointer displacement vari-
able 𝑑𝑖 as follows, to include remainder:

𝑑𝑖 ← | (Δ𝑥𝑖 , Δ𝑦𝑖) |E (15)

Next, the firmware computes 𝐾 and retrieves the 𝑥∗ value corre-
sponding

𝑖

 to its fractional index from A𝑥 array (via interpolation):
| (𝑐𝑥

 𝑖 , 𝑐𝑦𝑖) |OS 𝑑
𝐾

𝑖 ← and ∗
𝐾 𝑁𝑑

𝑥 ← A [] (16) | (𝑐𝑥𝑖 , 𝑐𝑦 𝑖 𝑥

𝑖) |E 𝐾max

Following the original definition of 𝑥 , the variable 𝑘𝑖 is computed
as follows: ∗ 𝑥

𝑘
𝑖

𝑖 ← (17) | (𝑐𝑥𝑖 , 𝑐𝑦𝑖) |OS

Finally, according to Equation 9, the HID report that the firmware
needs to send to the OS is calculated as follows:

(ℎ𝑥𝑖 , ℎ𝑦𝑖) ← 𝑘𝑖 (𝑐𝑥𝑖 , 𝑐𝑦𝑖) (18)

However, since today’s OSs only accept HID reports with inte-
ger components, the HID report vector computed above is passed
through the floor function ⌊𝑥 ⌋ and being transmitted the OS:

(ℎ𝑥𝑖 , ℎ𝑦𝑖) ← (⌊ℎ𝑥𝑖 ⌋, ⌊ℎ𝑦𝑖 ⌋) (19)

The loss of pointer displacement caused by the above flooring can
be calculated using array AOS based on Equation 6 as follows and
it is set as remainder for the next sensor reading:

𝑁OS | (ℎ𝑥 , ℎ𝑦) |OS (Δ𝑥𝑟 , Δ𝑦𝑟) ← (Δ𝑥𝑖 , Δ𝑦 − 𝑖AOS [𝑖

𝑖)] (ℎ𝑥𝑖 , ℎ𝑦
ℎ

𝑖) (20)
max

The series of algorithms from Equations 13 to 20 are performed
for each sensor reading (see Figure11 for a block diagram).

4 Technical Evaluation
In this section, we rigorously evaluate whether our proposed tech-
nique has comparable robustness and precision to conventional
technique. In particular, we follow a purely quantitative approach
rather than relying on subjective evaluations from users. We col-
lect the physical speed of the device, HID reports, and the pointer
position changes on the screen during random mouse movements
to evaluate how accurately and precisely our mouse implements
the desired gain function.

4.1 Method
4.1.1 Design. The experiment is conducted independently for both
the baseline (or Baseline) and our technique (or Ours). Both exper-
iments are performed with the same mouse, and in the Baseline
condition, the mouse’s sensor readings are directly sent to the OS as
HID reports, just like a conventional mouse. In Ours, the algorithm
proposed in this study is implemented in the mouse firmware.

The Baseline experiment followed a 6×2×2 full factorial design,
and the independent variables and their respective levels are:
• Native Function: C2, A2, C6, A6, C10, A10
• CPI: 400 or 800
• Polling Rate (in Hz): 125 or 250

Native Function refers to the native gain function setting that the
OS (Windows) has while the experiment is running, C refers to the
constant function, A refers to the acceleration function, and the
following number refers to the slider position in the control panel
(see Figure 12).

The experiment for Ours follows a 4×3×6×2×2 full factorial
design, and the independent variables and their respective levels
are as follows:
• Shape: Constant, Sigmoid, Sine, or Zigzag
• Scale: Low, Mid, High
• Native Function: C2, A2, C6, A6, C10, A10
• CPI: 400 or 800
• Polling Rate (in Hz): 125 or 250

Shape refers to the shape of the gain function that we want to realize
with our technique. Scale represents the amplitude of the desired
gain function. Low, Mid, and High conditions were determined with
reference to the range of A2, A6, and A10, respectively. All desired
gain functions resulting from each Shape-Scale combination are
plotted in Figure 13.

CHI ’25, April 26–May 01, 2025, Yokohama, Japan Seonho Kim, Munjeong Kim, Jonghyun Kim, Donghyeon Kang, Sunjun Kim, and Byungjoo Lee

2 6 10

C

A
= Enhance pointer precision

Figure 12: Six levels of Native Function used in Baseline

In addition to the above experiments, we also conducted addi-
tional experiments on Ours technique, where the device’s CPI and
polling rate were randomly changed once per second during mouse
movement under one of the following four conditions:
[CPI, Polling Rate (Hz)]=[400, 125], [400, 250], [800, 125], or [800, 250]

In this additional experiment, the Shape and Scale of the desired
gain function were fixed to Sigmoid_Mid, respectively, and the Na-
tive Function was fixed to the A6 condition. This experiment allows
us to evaluate whether the desired gain function can be robustly
reproduced by our technique under unintended perturbations of
hardware settings, such as CPI or polling rate.

4.1.2 Apparatus and Data Acquisition. The same custom mouse
described in Section 3.2 was used in the experiments. Arrays AOS

and A𝑥 for each Native Function were prepared in advance and
uploaded to the custom mouse firmware. For significantly low Na-
tive Gains (C2 and A2), 𝐾max and 𝑁𝑑 of A𝑥 array was increased to
10,000 and 20,001, respectively. The experiments were performed
on a single desktop PC (AMD Ryzen 5 7500F, 3,701 MHz, 32GB
RAM, Windows 10), equipped with a 4K display (LG 27UP850N,
3840 × 2160, 69.7×39.2 cm) to observe pointer displacement over
as wide a range as possible.

The mouse reads the sensor values at 125 Hz or 250 Hz (matched
to the Polling Rate of each condition) and sends the information
to the PC in two paths: via serial and via USB HID mouse report.
Through the serial communication, we collected three pieces of
mouse data for each sensor reading, (1) the physical speed of the
mouse 𝑣 , (2) the HID report sent to the OS (𝑟 𝑥𝑖 , 𝑟𝑦𝑖), and (3) the
microprocessor timestamp. With the USB HID mouse report, OS
translated the reported data to the cursor movement. A Python

Figure 13: Twelve Scale×Shape combination gain functions
used in Ours

script based on the pynput.mouse library detected the coordinates
of the pointer on the screen on cursor move events and recorded the
PC timestamp at the event. The baseline implementation took an
average of 155 µs data processing time from sensor data acquisition
to HID report generation, and our technique took an average of
280 µs, with an additional 130 µs of gain cancellation algorithm
computation time.

4.1.3 Procedure. The first author of this paper conducted all the
experiments. The experimenter randomly moved the mouse on
the desk during data collection for each experimental condition
of Baseline and Ours. To ensure that the mouse moved similarly
across all conditions, a simple visualization was provided to the ex-
perimenter in real time. The visualization consisted of two progress
bars. One bar showed whether the experimenter’s movements suf-
ficiently covered a wide range of mouse speeds. While most con-
ditions had a desired speed range of 0 to 1 m/s, some conditions
were measured only up to speeds lower than 1 m/s, as shown in
Table 2. This is because, for gain functions with a large average
scale, the pointer continues to hit the screen edge above a certain
device speed. Furthermore, this can reduce experimenter fatigue
by minimizing the time spent in an excessively fast speed range.
The second bar showed whether the experimenter’s movements
sufficiently covered a wide range of mouse movement directions (0
to 360°). Data collection was automatically terminated only when a
sufficient number of data points (𝑁 =300) were collected for each
speed and direction bin, such that all progress bars reached 100%.

This experiment took 0.8 hours for Baseline and 9.6 hours for
Ours to complete, during which the mouse actually moved for a total
of 0.15 hours and 1.6 hours, respectively. The separate experiment
for the Ours condition, where hardware settings were changed
randomly, took 5 minutes to complete, during which the mouse
actually moved for a total of 0.85 minutes.

4.1.4 Performance Evaluation. As a result of the experiment, we
quantify how accurately the desired gain function is implemented
as intended. We first multiply the measured mouse speed ˆ 𝑣 in the

Hardware-Embedded Pointing Transfer Function Capable of Canceling OS Gains CHI ’25, April 26–May 01, 2025, Yokohama, Japan

Time (ms)

2 px 0.4 3.6 4.3 4.7 5 5.7 5.3 4.8 4.1

0 8 16 24 32 40 48 56 64 72 80

2 4 4 5 5 5 6 4 4-

2.4 7.9 9.7 11 8.9

2 8 10 5 14

Figure 14: This figure shows how the values of 𝑑intend and 𝑑screen are accumulated within a time window of 16 ms.

firmware by the true desired gain 𝐺 (𝑣) to obtain the intended
pointer displacement, 𝑑intend. For Baseline conditions, 𝑑intend is ob-
tained by multiplying the magnitude of the measured sensor reading
count | (𝑐𝑥 , 𝑐𝑦) |E by the matching OS native gain 𝐺OS (| (𝑐𝑥, 𝑐𝑦) |OS).

Then, we obtain the actual displacement of the pointer 𝑑screen on
the screen at the instant and compare it to 𝑑intend. Next, we also tried
a method that sacrificed some external validity: we computed the
predicted pointer displacement 𝑑predict on the screen by multiplying
each raw HID report from the mouse by a known OS gain, rather
than measuring it directly from the movement of the pointer on
the screen: 𝑑predict = | (𝑟 𝑥 , 𝑟𝑦) |E ·𝐺OS (| (𝑟 𝑥, 𝑟𝑦) |OS). Ideally, the pairs
𝑑intend and 𝑑screen, and the pairs 𝑑intend and 𝑑predict should show high
correlation. In Baseline condition, since the sensor reading (𝑐𝑥 , 𝑐𝑦)
and the HID report (𝑟 𝑥, 𝑟𝑦) are always the same, 𝑑predict and 𝑑intend

are also always the same.

4.2 Result
4.2.1 Estimating 𝑑screen. There may be a delay between the pointer
coordinate data and the data sent from the mouse firmware (such
as mouse speed and HID reports). The delay for each condition was
estimated from the lagged cross-correlation between the pointer
coordinates and the HID report data after resampling. On average,
a time delay of 2.3 ms (𝜎 = 2.2) was observed (the firmware data
was lagging) and the two data were synchronized for each con-
dition. When divided into two groups, Baseline conditions and
Ours conditions, the average time delay was 3.3 ms (𝜎 =1.9) and

Table 2: In some conditions, a maximum device speed lower
than 1 m/s was considered for measurements.

Condition Gain Function
Maximum Device Speed (m/s)
400 CPI 800 CPI

Baseline C6 1.00 0.82

Baseline A6 0.66 0.36

Baseline C10 0.55 0.28

Baseline A10 0.41 0.24

Ours Constant-High 0.55 0.55

Ours Sigmoid-Mid 0.69 0.69

Ours Sigmoid-High 0.53 0.53

Ours Sine-High 0.91 0.91

Ours Zigzag-Mid 0.72 0.72

Ours Zigzag-High 0.45 0.45

2.2 ms (𝜎 = 2.2), respectively. The pointer coordinate data is then
converted into pointer displacement (𝑑screen) data by subtracting
adjacent rows. Meanwhile, when the pointer contacted the edge
of the screen, the pointer displacement due to the HID report may
not have been fully achieved, which could act as significant noise
in our technical evaluation. Therefore, data measured while the
pointer was contacting one of the screen edges and data measured
adjacent to and before and after those contacts were considered
outliers and were excluded from the analysis. In Baseline, 1,029
rows out of 32,874 rows were removed (3.13%), and in Ours, 16,640
rows out of 350,454 rows were removed (4.61%).

4.2.2 Agreement Between |𝑑intend |𝑊 and |𝑑screen |𝑊 . Since the pointer
coordinate data and the data transmitted from the firmware are
measured at different sampling rates, comparable (𝑑intend, 𝑑screen)
pairs may not always exist. Therefore, instead of doing an element-
wise comparison of 𝑑intend and 𝑑screen, we focus on the fact that the
𝑑intend data sampled at a high frequency is accumulated to determine
the 𝑑screen sampled at a low frequency. We divided the 𝑑intend and
𝑑screen data into 𝑊 -ms long time windows evenly and then calcu-
lated |𝑑intend |𝑊 and |𝑑screen |𝑊 , which are the sums of 𝑑intend and 𝑑screen,
within each time window (see Figure 14). Considering the sampling
rate at which pointer coordinates are collected (125 Hz or 250 Hz),
𝑊 is set to 16 ms to ensure that at least two pointer coordinates
can be included per time window to obtain the displacement.

Two metrics are introduced to evaluate the agreement between
|𝑑intend |𝑊 and |𝑑screen |𝑊 . The first is the correlation between the two
values. Linear regression is performed on all (|𝑑intend |𝑊 , |𝑑screen |𝑊)
points for each condition, and the regression equation and coeffi-
cient of determination (𝑅 2) are analyzed. The second is the differ-
ence between |𝑑intend |𝑊 and |𝑑screen |𝑊 , i.e. the error in implementing
the desired pointer displacement. The mean absolute error (MAE,
unit: pixels) is computed for all (|𝑑intend |𝑊 , |𝑑screen |𝑊) pairs.

As a result, the 𝑅 2 and MAE of Baseline and Ours did not show
significant differences, as follows: Baseline 𝑅 2=0.9666 (𝜎 =0.0400),
MAE=5.0020 (𝜎 =5.8621), Ours 𝑅 2=0.9692 (𝜎 =0.0341), MAE=4.6514
(𝜎 =4.4401). The mean slope and intercept of the regression equa-
tion were as follows for each technique: Baseline slope 0.9644
(𝜎 =0.0361) and intercept 3.6276 (𝜎 =4.6703), Ours slope 0.9436 (𝜎 =0.0
388) and intercept 4.7642 (𝜎 =4.4972). Figure 15 show the main ef-
fects of each independent variable on 𝑅 2 and MAE. For Baseline
and Ours, we randomly sampled the same number of (|𝑑intend |𝑊 ,
|𝑑screen |𝑊) pairs, uniformly across all conditions, and plotted their
scatter plots in Figure 16, together with the additional results when
𝑊 is increased to 256 ms.

CHI ’25, April 26–May 01, 2025, Yokohama, Japan Seonho Kim, Munjeong Kim, Jonghyun Kim, Donghyeon Kang, Sunjun Kim, and Byungjoo Lee

Figure 15: 𝑅 2 and MAE of Baseline and Ours conditions obtained as a result of technical evaluation

B
as

el
in

e
O

ur
s

vs.vs. vs.(W=16ms) (W=256ms)

Figure 16: Scatter plots drawn by randomly sampling the same number of (|𝑑intend |𝑊 , |𝑑screen |𝑊) or (𝑑intend, 𝑑predict) pairs for Baseline
and Ours conditions

Hardware-Embedded Pointing Transfer Function Capable of Canceling OS Gains CHI ’25, April 26–May 01, 2025, Yokohama, Japan

Using the same method, we also analyzed data measured un-
der the condition where the CPI and polling rate were randomly
changed every second. As a result, the 𝑅 2 and MAE were still
comparable to the Baseline, as follows: 𝑅 2 =0.9731 (𝜎 =0.0190)
and MAE=5.6236 (𝜎 =3.2210). There was no noticeable anomaly in
pointer movement at the moment when the hardware settings were
automatically changed.

4.2.3 Agreement Between 𝑑intend and 𝑑predict. To examine the corre-
lation between 𝑑intend and 𝑑predict, timestamp synchronization was
not required, as both were calculated within the same serial port
data packet. Therefore, we compared individual (𝑑intend, 𝑑predict) pairs
without a window-based accumulation. Additionally, since HID
reports are unaffected by whether the pointer reaches the screen
edge, no post-processing was performed for the calculation of 𝑑predict.
For each condition, a linear regression analysis was performed on
the (𝑑intend, 𝑑predict) data points, and MAE between 𝑑intend and 𝑑predict
was also calculated. Note that these analyses were not conducted
for Baseline, as 𝑑intend and 𝑑predict are always identical in that case,
making the analyses irrelevant (i.e., 𝑅 2 = 1.0 and MAE=0).

As a result, 𝑅 2 and MAE in Ours conditions were obtained as
follows: 𝑅 2=0.9951 (𝜎 =0.0196), MAE=0.4060 (𝜎 =0.3155). The aver-
age slope and intercept of the linear regression equations were
𝑅 2=1.0004 (𝜎 =0.0046) and MAE=0.0192 (𝜎 =0.0502), respectively.
The results are also shown in Figures 15 and 16, alongside the
𝑑intend vs. 𝑑screen results. We also analyzed data measured under the
condition where the CPI and polling rate were randomly changed
every second. The 𝑅 2 and MAE of Ours condition were: 𝑅 2=0.9998
(𝜎 =0.00005) and MAE=0.4891 (𝜎 =0.0197).

5 Discussion and Limitations
In the technical evaluation, we found that the performance of Ours
in implementing the desired gain function was indistinguishable
from Baseline in terms of pointer displacement measured directly
on the screen (𝑑screen). We speculate that the common noise observed
in the scatter plots of both Baseline and Ours conditions (Figure
16) is because the measurement delay between 𝑑intend and 𝑑screen

slightly varies in real time during a single measurement even after
pre-synchronization. Such stochastic noise can cause the number of
data points included in the 16 ms time window to exceed or fall short
by one, which can lead to inaccurate calculations of |𝑑intend |𝑊 and
|𝑑screen |𝑊 , thereby lowering 2 𝑅 and increasing MAE. In particular,
such noise can be amplified proportionally to the pointer speed,
and we actually observed that an increase in the overall magnitude
of the gain handled in both Baseline and Ours conditions leads
to a decrease in 2 𝑅 and a increase in MAE (see A10 condition and
High condition in Figure 15). When the window size was increased
to 256 ms, the noise in the scatterplot spread less in proportion to
the displacement magnitude, which also supports that it originates
from the measurement delay.

The results of the correlation analysis between 𝑑intend and 𝑑predict,
which are relatively free from delay issues because the analysis was
performed only with data transmitted from the device firmware,
showed that Ours condition had additional sub-pixel level errors
compared to Baseline condition. In Ours condition, the error be-
tween 𝑑intend and 𝑑predict showed an increasing trend as the overall
scale of the gain function grew, while still maintaining sub-pixel

level. One important point to note is that this sub-pixel error does
not imply the existence of probabilistic jitter in the pointer’s move-
ment trajectory. This error simply means that the gain function
realized is not exactly the same as the intended gain function due
to the approximation error present in the tables uploaded to the
device firmware (A𝑥 , AOS). We expect that the ability to implement
any custom gain function with sub-pixel level pointer displace-
ment errors will satisfy most high-performance users. Moreover,
the errors in our technique can be further reduced by increasing
the resolution of the tables being uploaded (i.e., increasing 𝑁𝑑 or
𝑁𝑥), although this would require additional memory in the device
firmware. However, we acknowledge that future research needs to
more closely explore what level of sub-pixel error is sufficient to
provide users with adequate subjective satisfaction.

The most important breakthrough in this study is the compu-
tation of a lookup table, A𝑥 (see Equation 12), uploaded to the
firmware that tells us which HID reports to send to generate the
desired pointer displacement while canceling out the influence of
the OS-native gain. A𝑥 is constructed by finding the intersection of
two functions, 𝑦 = 𝐾 and 𝑦 = 𝐺𝑥 OS (𝑥). One might wonder if there
are cases where it is impossible to compute A𝑥 . The answer is yes,
and there are two possible cases: when 𝐺OS (𝑥) is 0 in some region,
or when 𝐺OS (𝑥) is defined to only accept inputs below a certain
maximum. As far as we know, modern OS-native gain functions do
not fall into either of these cases. Rather, we think that the most re-
alistic and critical challenge in computing A𝑥 comes when 𝐺OS (𝑥)
has a very large dynamic range. Then, the intersection point 𝑥 ∗ of
the two functions will also vary over a large range, and as a result,
the size of the table to be uploaded to the firmware may become
excessively large. If such a case occurs, instead of uploading the
raw table as it is, we should try to approximate it by uploading only
the coefficients of the polynomial fit function or by reducing the
size of the table and relying on interpolation. Fortunately, we think
that such problems rarely occur under the dynamic range of the
common OS-native gain functions today.

Even if the native gain functions are not known in advance, it is
not difficult to accurately measure them [2]. By repeatedly sending
a specific HID report to the OS, the displacement of the pointer can
be measured, and the corresponding OS gain can be determined.
The HID reports can be generated using a separate microprocessor
[2] or, for a specific OS (e.g., Linux), can be emulated by software.
In our technique, it is possible to add a feature to the firmware of
the custom mouse that allows it to switch into a so-called “gain
measurement mode”, which repeatedly sends HID reports to the
OS. Our pilot implementation of this idea showed that for a single
OS gain function setting, it took a total of 3.6 minutes to accurately
measure the gain function up to a maximum magnitude range of
512 in the HID report (17 repetitions per magnitude, with steps
of 7). Since the OS gain function only needs to be measured once
per setting, we believe that this will not be a big burden for high-
performance users.

In this study, we defined the transfer function as a function of
physical mouse speed (𝑚/𝑠) and on-screen pointer speed (𝑝𝑥 /𝑠), so
the gain unit we used is 𝑝𝑥 /𝑚. Unlike us, most previous studies de-
fined the gain in the transfer function as unit-less [2, 6], using both
the device speed and the pointer speed in physical displacement

CHI ’25, April 26–May 01, 2025, Yokohama, Japan Seonho Kim, Munjeong Kim, Jonghyun Kim, Donghyeon Kang, Sunjun Kim, and Byungjoo Lee

units. The concept of unit-less gain makes sense when considering
unified physical contexts where the display and interaction space
are tightly coupled to the user’s physical environment, such as
direct manipulation and immersive VR setups. In the context of
gaming on an indirect display, however, the interaction elements
on the display are primarily defined in pixel terms, controlled by
pixel-precise pointers. In addition, the apparent angular size of the
displayed element is subject to change by the distance between
the eyes and the screen. Therefore, we believe that the absolute
size of objects on screen is less significant. For example, Kim et al.
[9] conducted a study to measure first-person shooter game scores
while varying the display size, while maintaining equivalent FoV
(field of view, unit:◦), latency, brightness, and display resolution.
Except for one condition where the display size is too small (13")
and too close to the eyes, the game score remained at the same level
(∼1% difference) while the display size varied in the range from 26"
to 65". This is equivalent to tripling the gain in physical size, but the
effect was minimal. This result suggests that the unit of the transfer
function in this context should be ◦/𝑚 as the function of the user’s
FoV and mouse displacement, rather than the unitless gain. For
future reference, one pixel in our study corresponds to 0.01486◦
(3,840×2,160 resolution, 69.7×39.2 cm display placed at 70 cm from
the user’s eye). Our results in 𝑝𝑥 /𝑚 can be easily converted to ◦/𝑚
by multiplying the factor of 0.01486.

On the other hand, readers may wonder how our technique can
be applied to some commercial games that bypass the OS transfer
function and force the use of their own in-game transfer function.
In such games, input device control sometimes leads to changes
other than pointer movement. For example, in FPS games, moving
the input device usually changes the character’s first-person view
camera orientation, not the position of a pointer on the screen. In
order to utilize our technique in such cases, the game system should
be considered as a separate independent OS and the following
two modifications should be made: (1) re-define the units of gain
function as the units of in-game changes caused by input (e.g., ◦/m
in FPS games)[1], and (2) precisely measure the transfer functions
embedded in the game system. Since the in-game transfer functions
of popular commercial games are generally already measured and
known by players8 , we expect that these modifications can be made
easily in most cases. Except for these modifications, all steps in
Section 3 can be performed in the same way.

Although our technique significantly reduces the burden of trans-
fer function customization and maintenance compared to existing
solutions, there is still one thing that users must do manually to
use our technique: informing the device firmware of the OS gain
function setting (i.e., the position of the slider in the control panel).
For example, this can be done by pressing buttons on the device to
adjust the firmware settings, aligning them with the OS settings.
Alternatively, to minimize manual effort, we can pre-define stan-
dard OS settings to use the device and require users to adhere to
them (e.g., set the slider to the center position). If users are willing
to install additional software, a simple client application could read
the OS setting registry values when the device is connected and
automatically send them to the device via the serial port.

8Such as Counter-Strike: Global Offensive (CS:GO), Rainbow Six Siege, and Valorant

Finally, we believe that the technique we proposed could be
commercialized in the near future. Compared to existing mouse
implementations on the market, our technique additionally requires
about 177 KB of memory to store the entire lookup table pre-loaded
and ≈130 𝜇𝑠 of computation time. In our case, the MCU we used
was sufficient to embed the entire lookup table on the chip and
easily achieved the 1,000 Hz rate in our test. Alternatively, it is also
possible to connect an additional memory chip that costs only a
fraction of a dollar to support an existing microprocessor with lim-
ited on-chip memory. Or, it is possible to store only one lookup table
at a time (using only 5 KB of SRAM) on demand when implement-
ing the technique on existing mouse hardware. Meanwhile, note
that we built the mouse hardware following Dual Sensor Mouse
project [8, 10], and the modified 3D model and gain-cancelling
source code are available online9 This allows interested researchers
and users to build the mouse themselves without waiting for mouse
manufacturers to incorporate our transfer function technique.

6 Conclusion
The way pointing transfer functions are implemented in today’s
operating systems makes it difficult to satisfy users’ demands for
extreme high performance due to the following two problems: (1)
the transfer functions cannot be customized in detail, and (2) un-
intended perturbations of hardware settings or OS-native transfer
function settings cause significant disruptions in users’ transfer
function experience. The hardware-embedded pointing transfer
function technique proposed in this study solves both problems by
directly defining the transfer function in physical units in the de-
vice’s firmware and embedding a special algorithm in the firmware
that cancels out the influence of the OS-native function. In particu-
lar, our technique does not require separate software installation,
unlike existing solutions, and supports all OS types. In a rigorous
technical evaluation study using a custom-built mouse hardware,
we evaluated and compared the conventional technique and our
technique to see whether the intended pointer displacement based
on the desired transfer function was actually accurately realized
on the screen. As a result, we demonstrated that our technique has
comparable accuracy and reliability to the conventional method
in realizing custom transfer functions of various shapes and scales
under various CPI and polling rate settings.

Acknowledgments
This study was funded by National Research Foundation of Korea
(RS-2023-00223062, RS-2023-00211872), and Institute of Information
and Communications Technology Planning and Evaluation (RS-
2020-II201361). We thank anonymous reviewers for constructive
feedback.

References
[1] Ben Boudaoud, Josef Spjut, and Joohwan Kim. 2023. Mouse sensitivity in first-

person targeting tasks. IEEE Transactions on Games (2023).
[2] Géry Casiez and Nicolas Roussel. 2011. No more bricolage! Methods and tools to

characterize, replicate and compare pointing transfer functions. In Proceedings of
the 24th Annual ACM Symposium on User Interface Software and Technology (Santa
Barbara, California, USA) (UIST ’11). Association for Computing Machinery, New
York, NY, USA, 603–614. https://doi.org/10.1145/2047196.2047276

9https://github.com/SunjunKim/esp32_pmw3389_dual.git

https://doi.org/10.1145/2047196.2047276
https://github.com/SunjunKim/esp32_pmw3389_dual.git

Hardware-Embedded Pointing Transfer Function Capable of Canceling OS Gains CHI ’25, April 26–May 01, 2025, Yokohama, Japan

[3] Seungwon Do, Minsuk Chang, and Byungjoo Lee. 2021. A simulation model of
intermittently controlled point-and-click behaviour. In Proceedings of the 2021
CHI Conference on Human Factors in Computing Systems. 1–17.

[4] Ian Donovan, Marcia A Saul, Kevin DeSimone, Jennifer B Listman, Wayne E
Mackey, and David J Heeger. 2022. Assessment of human expertise and movement
kinematics in first-person shooter games. Frontiers in Human Neuroscience 16
(2022), 979293.

[5] Jessica Formosa, Nicholas O’donnell, Ella M Horton, Selen Türkay, Regan L
Mandryk, Michael Hawks, and Daniel Johnson. 2022. Definitions of esports: a
systematic review and thematic analysis. Proceedings of the ACM on Human-
Computer Interaction 6, CHI PLAY (2022), 1–45.

[6] Ravin Balakrishnan Géry Casiez, Daniel Vogel and Andy Cock-
burn. 2008. The Impact of Control-Display Gain on User Per-
formance in Pointing Tasks. Human–Computer Interaction 23,
3 (2008), 215–250. https://doi.org/10.1080/07370020802278163
arXiv:https://www.tandfonline.com/doi/pdf/10.1080/07370020802278163

[7] Raiza Hanada, Damien Masson, Géry Casiez, Mathieu Nancel, and Sylvain
Malacria. 2021. Relevance and Applicability of Hardware-independent Point-
ing Transfer Functions. In The 34th Annual ACM Symposium on User Interface
Software and Technology. 524–537.

[8] Donghyeon Kang, Namsub Kim, Daekaun Kang, June-Seop Yoon, Sunjun Kim,
and Byungjoo Lee. 2024. Quantifying Wrist-Aiming Habits with A Dual-Sensor
Mouse: Implications for Player Performance and Workload. In Proceedings of the
CHI Conference on Human Factors in Computing Systems. 1–18.

[9] Joohwan Kim, Arjun Madhusudan, Benjamin Watson, Ben Boudaoud, Roland
Tarrazo, and Josef Spjut. 2022. Display size and targeting performance: Small
hurts, large may help. In SIGGRAPH Asia 2022 Conference Papers. 1–8.

[10] Sunjun Kim, Byungjoo Lee, Thomas Van Gemert, and Antti Oulasvirta. 2020.
Optimal sensor position for a computer mouse. In Proceedings of the 2020 CHI
Conference on Human Factors in Computing Systems. 1–13.

[11] Erica Kleinman, Reza Habibi, Garrett B Powell, Brent Reeves, James Prather, and
Magy Seif El-Nasr. 2024. “Backseat Gaming" A Study of Co-Regulated Learning
within a Collegiate Male Esports Community. In Proceedings of the CHI Conference
on Human Factors in Computing Systems. 1–14.

[12] Byungjoo Lee, Mathieu Nancel, Sunjun Kim, and Antti Oulasvirta. 2020. Auto-
Gain: gain function adaptation with submovement efficiency optimization. In

Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems.
1–12.

[13] Hanbyeol Lee, Seyeon Lee, Rohan Nallapati, Youngjung Uh, and Byungjoo Lee.
2024. Characterizing and Quantifying Expert Input Behavior in League of Legends.
In Proceedings of the CHI Conference on Human Factors in Computing Systems.
1–21.

[14] Arjun Madhusudan and Benjamin Watson. 2021. Better frame rates or better
visuals? An early report of Esports player practice in Dota 2. In Extended Abstracts
of the 2021 Annual Symposium on Computer-Human Interaction in Play. 174–178.

[15] Mathieu Nancel, Emmanuel Pietriga, Olivier Chapuis, and Michel Beaudouin-
Lafon. 2015. Mid-air pointing on ultra-walls. ACM Transactions on Computer-
Human Interaction (TOCHI) 22, 5 (2015), 1–62.

[16] N.R.K#7525. 2020. Mouse Accel 101. https://docs.google.com/document/d/
1wuQln99lQVBU9L8_QbpifrarpJ1xjPuKsKD2FY026Hc/edit?usp=sharing [Ac-
cessed Sep 12, 2024].

[17] Eunji Park, Sangyoon Lee, Auejin Ham, Minyeop Choi, Sunjun Kim, and Byungjoo
Lee. 2021. Secrets of Gosu: Understanding physical combat skills of professional
players in first-person shooters. In Proceedings of the 2021 CHI Conference on
Human Factors in Computing Systems. 1–14.

[18] Ruth Rosenholtz, Yuanzhen Li, and Lisa Nakano. 2007. Measuring visual clutter.
Journal of vision 7, 2 (2007), 17–17.

[19] Shaishav Siddhpuria, Sylvain Malacria, Mathieu Nancel, and Edward Lank. 2018.
Pointing at a distance with everyday smart devices. In Proceedings of the 2018
CHI conference on human factors in computing systems. 1–11.

[20] Josef Spjut, Ben Boudaoud, Kamran Binaee, Jonghyun Kim, Alexander Majercik,
Morgan McGuire, David Luebke, and Joohwan Kim. 2019. Latency of 30 ms
benefits first person targeting tasks more than refresh rate above 60 Hz. In
SIGGRAPH Asia 2019 Technical Briefs. 110–113.

[21] Benjamin Watson, Josef Spjut, Joohwan Kim, Byungjoo Lee, Mijin Yoo, Peter
Shirley, and Rulon Raymond. 2024. Is Less More? Rendering for Esports. IEEE
Computer Graphics and Applications 44, 2 (2024), 110–116.

[22] Benjamin Watson, Josef Spjut, Joohwan Kim, Jennifer Listman, Sunjun Kim,
Raphael Wimmer, David Putrino, and Byungjoo Lee. 2021. Esports and high
performance HCI. In Extended Abstracts of the 2021 CHI Conference on Human
Factors in Computing Systems. 1–5.

https://doi.org/10.1080/07370020802278163
https://arxiv.org/abs/https://www.tandfonline.com/doi/pdf/10.1080/07370020802278163
https://docs.google.com/document/d/1wuQln99lQVBU9L8_QbpifrarpJ1xjPuKsKD2FY026Hc/edit?usp=sharing
https://docs.google.com/document/d/1wuQln99lQVBU9L8_QbpifrarpJ1xjPuKsKD2FY026Hc/edit?usp=sharing

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Comparison with Existing Solutions
	2.2 Preliminary Survey with Serious Gamers
	2.3 Pointing Transfer Function for Gamers

	3 Technique Implementation
	3.1 Overview
	3.2 Custom Mouse Hardware
	3.3 Hardware-Embedded Pointing Transfer Function Defined in Physical Units
	3.4 OS Gain Cancellation

	4 Technical Evaluation
	4.1 Method
	4.2 Result

	5 Discussion and Limitations
	6 Conclusion
	Acknowledgments
	References

