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Figure 1: (Left) conventional pointing transfer function method, (Right) hardware-embedded transfer function method 

Abstract 
When using indirect pointing devices in modern operating systems 
(OS), users’ perception of the pointing transfer function is easily 
influenced by the device’s hardware or OS-native transfer function 
settings. This could hinder users from finding and fully adapting to 
the transfer function that is optimal for them. We propose a novel 
hardware-embedded transfer function technique that is expected 
to allow users to consistently experience the desired function even 
when device hardware or OS settings change. The technique (1) al-
lows users to define the desired function within the device firmware 
in physical units and (2) enables the firmware to cancel out the in-
fluence of OS-native functions and hardware setting perturbations, 
so that the uploaded function can persist regardless of the external 
environment. Through technical evaluation including transfer func-
tions of various shapes, we showed that the proposed technique has 
comparable robustness and accuracy to the conventional approach. 
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• Human-centered computing → Pointing devices. 

Keywords 
Esports, Pointing, Gain Function, Fitts’ Law 

∗Co-corresponding authors 

This work is licensed under a Creative Commons Attribution 4.0 International License. 
CHI ’25, Yokohama, Japan 
© 2025 Copyright held by the owner/author(s). 
ACM ISBN 979-8-4007-1394-1/25/04 
https://doi.org/10.1145/3706598.3714076 

ACM Reference Format: 
Seonho Kim, Munjeong Kim, Jonghyun Kim, Donghyeon Kang, Sunjun Kim, 
and Byungjoo Lee. 2025. Hardware-Embedded Pointing Transfer Function 
Capable of Canceling OS Gains. In CHI Conference on Human Factors in 
Computing Systems (CHI ’25), April 26–May 01, 2025, Yokohama, Japan. ACM, 
New York, NY, USA, 15 pages. https://doi.org/10.1145/3706598.3714076 

1 Introduction 
When using indirect pointing devices such as a mouse or trackpad, 
a pointing transfer function determines the relationship between 
the physical speed of the device 𝑠𝑑 and the speed at which the 
pointer moves on the screen 𝑠𝑝 [2, 12]. If we compute the ratio 
of two speeds at a particular time 𝑡 , that is the pointing gain 𝐺 
(=𝑠𝑝 /𝑠𝑑 ), and pointing transfer functions are therefore also called 
gain functions [7, 19]. An acceleration gain function increases the 
gain as the device speed increases, while a constant gain function 
maintains the gain regardless of the device speed [6]. 

Pointing transfer function design has a significant impact on 
on-screen target acquisition performance [6]; providing a gain that 
is neither too high nor too low [1, 6] and providing an acceleration 
function rather than a constant function can result in higher perfor-
mance [6, 12]. Meanwhile, pointing behaviors can vary significantly 
depending on users’ cognitive and physical characteristics and mo-
tivational states (e.g., speed-accuracy bias) [3], so there may not 
be a single transfer function that satisfies all interaction scenarios 
and all users [12]. Accordingly, most operating systems (OS) today 
allow users to select from a number of transfer function presets 
(accelerated or constant) with different levels, rather than providing 
a single fixed function (see Figure 2). 
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Figure 2: Pointing transfer function customization options 
in modern OSs 

While previous studies [2, 6, 12, 15] have mainly focused on the 
design of transfer functions in general office interaction scenarios 
with moderate performance pressure, in this study we critically 
examine how modern transfer functions can support users who aim 
for extreme level of performance. Consider professional athletes in 
desktop competitive video games (i.e., esports) [5, 11, 13, 17, 22]; 
competitions between those athletes are highly active today, with 
millions of dollars in prize money and millions of viewers around 
the world. Unlike everyday interactions in the office, even a slight 
performance deficit can result in a critical defeat in competitive 
video games, so they are looking for a more suitable game setting 
that can boost their performance even a little [9, 13, 17]. 

For example, recent studies [14, 21] showed that competitive 
video game players turn off most of the graphical options because it 
allows them to reduce latency through a small increase in frame rate 
[20], and improve enemy recognition through a small reduction in 
visual clutter [18]. Our main question in this study, then, is: What 
pointing transfer function features should be available to users who 
seek maximum input performance and welcome even the smallest 
performance improvements? 

The first desired feature is probably the maximum level of cus-
tomizability to accommodate the different physical and cognitive 
characteristics and motivational states of users. The pointing trans-
fer function is a continuous function of the device speed 𝑠𝑑 and can 
therefore be determined in infinitely many different ways. If the 
user could draw the function shape directly or define it as a cubic 
spline based on a few control points, it would be easy for the user 
to explore and find the function that best suits them. However, no 
OS or device provides such a feature yet. Currently, users can only 
passively select one of about 20 transfer functions in a form prede-
fined by the OS [2]. This may have led to a culture where serious 

Figure 3: Websites that allow anyone to reference the mouse 
settings of professional esports athletes 

gamers today simply follow the recommendations or settings of 
other players [17] rather than spending enough time exploring the 
transfer function that suits them (see Figure 3). 

The second desired feature is that the transfer function designed 
by users should be sustainable over a long period of time without be-
ing disturbed by external factors until users are sufficiently trained 
on it. However, a feature of modern computing environments [7] 
makes this feature difficult to provide: the OS-native transfer func-
tions available today are defined as functions of logical counts 
rather than physical speed units (e.g., 𝑚/𝑠 ). This causes users to 
experience a completely different transfer function in physical units 
if the hardware settings of the device, such as sensor sensitivity 
(i.e., counts per inch, CPI) or polling rate (in Hz), change for any 
reason (see Figure 4). Figure 6 illustrates how the gain function 
that users actually experience in physical units changes under each 
condition of OS-native constant, linear acceleration, and nonlinear 
acceleration gain function when the CPI and polling rate of the 
indirect pointing device are changed. In particular, if the OS native 
function is set as an accelerated one, the overall scale and shape of 
the perceived gain function is disrupted by both CPI and polling rate 
[7], which we speculate may be the reason why professional video 
gaming athletes do not use the accelerated function [1, 4] despite 
its performance benefits observed in previous studies [6, 12]. 

We could wait for modern OSs to provide transfer function fea-
tures that can support high-performance users [7], but in this study, 
we would like to preemptively suggest a solution that is more 
immediate and independent of existing OSs (see Figure 1). More 
specifically, we propose to upload the following two components 
to the firmware of the device: (1) a transfer function defined in 
physical units that can be fully customized by users, and (2) an algo-
rithm that cancels out the influence of OS-native transfer functions 
and hardware setting perturbations, so that the uploaded transfer 
function can persist regardless of the external environment. With 
input devices equipped with this solution, users can experience the 
desired transfer function by simply plugging in the input device 
into most modern computing environments, regardless of OS, CPI, 
or polling rate settings. Our proposed solution is realized in this 
study based on a custom computer mouse equipped with a fully pro-
grammable chip1 . In a full-factorial technical evaluation performed 
on two CPIs, two polling rates, and six OS-native transfer functions, 
we demonstrate that the proposed technique can realize a variety 
of targeted transfer functions while maintaining robustness and 
accuracy comparable to the conventional system. 

2 Background and Related Work 

2.1 Comparison with Existing Solutions 
Several previous studies [2, 7] in HCI have also criticized the way 
pointing transfer functions are defined and used today. Those stud-
ies have focused on scientific replicability issues in HCI research 
rather than considering the needs of high-performance users. Ac-
cording to those studies, in order for user experiments using OS-
native transfer functions (defined in logical units) to be replicated, 

1Our proposed solution is lightweight enough to be integrated into the firmware of 
existing gaming mice, but in this study we chose not to hack existing devices in order 
to achieve a transparent and controllable implementation. 
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Figure 4: As noted by Hanada et al. (2021) [7], even with the same physical mouse movement, the resulting pointer displacement 
can vary significantly depending on mouse device settings. In this case, a mouse moved 1 inch at a constant speed of 6.25 inches 
per second over 160 ms (the mouse sensitivity slider set to tick 6 with "Enhance Pointer Precision" enabled in Windows) 
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Figure 5: Existing transfer function solutions: (left) libpointing, (middle) Closest tool, (right) Raw Accel 

the resolution of the display and hardware settings must all be ex-
plicitly stated in the paper, which is not common. This is essentially 
the same story as our concern that the transfer function experi-
enced in physical units is easily disturbed by external factors [7], 
making it difficult for high-performance users to sufficiently adapt 
to the desired function. 

To address the replicability problem, two solutions have been 
proposed. (see Figure 5). The first is to bypass the OS-native trans-
fer function by using system APIs such as RAWINPUT which 
allow intercepting the native mouse events from the device be-
fore the system transfer function is applied. Through this method, 
libpointing library released in 2011 [2] successfully implemented 
various custom transfer functions independently from the OS-
native transfer functions. However, this method still does not com-
pletely prevent unintended disturbances in hardware settings from 
significantly affecting users’ transfer function experience because 
the device’s CPI or polling rate must be manually notified to the soft-
ware. It also has limited control over the position of the pointer be-
cause in Windows, it alters SmoothMouseXCurve and SmoothMouse 
YCurve registry values to apply the customized transfer function, 
but it only has four control points, which cannot faithfully apply 
the desired shape of the function. Instead, it may be possible to fully 
control the pointer using an OS API like SetCursorPos [12], but 

many games block software-based pointer control APIs due to se-
curity issues or allow only internal raw input channels2 . Therefore, 
we believe that the solution is difficult to use for high-performance 
users. The hassle of having to pre-install the library also makes it 
difficult to use widely. 

The second solution, called Closest tool [7], is to suggest to 
users how the OS-native function should be set (e.g., which tick on 
the slider to select) to get the most similar experience to a desired 
transfer function defined in physical units. However, this approach 
still burdens users with installing separate software and manually 
notifying the system of changes in their computing environment 
or device settings. Furthermore, it does not allow for sufficient 
customization of transfer functions to satisfy high-performance 
users who cannot find what they want among the small number of 
predefined OS-native functions. 

Meanwhile, outside of the realm of HCI research, in the video 
game community, a tool called Raw Accel 3 has been developed 
with a goal closer to ours: supporting high-performance users. The 
tool manipulates HID reports coming from input devices through 
a low-level kernel driver to implement a desired transfer function. 

2Popular games like: Apex Legends, PUBG, Call of Duty, Call of Duty: Warzone 
3https://github.com/a1xd/rawaccel 

https://github.com/a1xd/rawaccel
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Figure 6: We calculate and illustrate how the gain function in physical units changes under different OS-native gain func-
tions—constant, linear acceleration, and nonlinear acceleration—by varying the CPI and polling rate of the indirect pointing 
device. For the constant type, the scale changes with CPI. For the linear acceleration type, both scale and shape change with 
CPI. For the nonlinear acceleration type, both scale and shape change with CPI, and they also change with polling rate. 
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Table 1: Comparison of the transfer function technique proposed in this study with existing solutions 

Technique Hardware Setting Customizability Additional Software Anti-Cheat Block 

Compensation Possibility 

libpointing [2] Manual High Needed High4 

Closest [7] Manual Low Needed Low 

Raw Accel Manual High Needed Medium 

Ours Automatic High Unneeded Low 

This allows users to be relatively free from security blocking issues 
compared to tools that rely on high-level system APIs. However, the 
tool still requires users to install separate software, perform manual 
calculations to compensate for the effects of input device settings, 
and may be blocked by more sophisticated anti-cheat mechanisms. 
Additionally, the fact that Raw Accel cannot work on OSs other 
than Windows prevents it from being a universal solution for high-
performance users. 

Unlike previous solutions, the transfer function technique pro-
posed in this study can automatically respond to hardware setting 
changes because all processes are implemented within the hard-
ware firmware. Furthermore, it allows full customization of transfer 
functions regardless of the type of OS without installing separate 
software or libraries. Finally, since the signals from the input de-
vice equipped with our solution are indistinguishable from the 
signals from conventional devices from the system’s perspective, 
our solution can be widely adopted in applications that impose 
some restrictions on the pointer control mechanism. Table 1 further 
highlights the differences between ours and the existing ones. 

2.2 Preliminary Survey with Serious Gamers 
The main motivation for this study is that today’s OS-native transfer 
functions do not satisfy high-performance users. To support this 
claim, we conducted a preliminary survey of 17 serious gamers 
(𝜇=15.94 years, 𝜎 =2.39). All survey participants were players of first-
person shooters (FPS, 𝑁 =12) or multi-player online battle arena 
(MOBA, 𝑁 =5) games whose primary input device was a computer 
mouse, and were randomly recruited from a local esports academy. 
One of the participants was a current professional esports athlete, 
and two were trainees aiming for a professional debut. The in-game 
tiers of the remaining participants were one in the top 0.2%, four in 
the top 2%, eight in the top 12%, and one in the top 35%. Participants 
were compensated with a gift worth 4 USD. The survey consisted 
of 44 questions that investigated the overall experience related to 
mouse use, of which seven questions were directly related to the 
motivation of this study. The survey results for those questions are: 
• Q1. Are you using an acceleration pointing transfer function? 
(Yes: 3 / 17.6%) 
• Q2. Do you think your gaming skills deteriorate if you use a 
mouse that you don’t normally use? (Yes: 15 / 88.2%) 
• Q3. Do you think different game genres require different mouse 
settings? (e.g., CPI) (Yes: 13 / 76.5%) 

4Since libpointing has limited ability to apply a custom OS-level transfer function, 
application-level mouse message injection is required to have full control of the cursor, 
which has a higher chance of being filtered by an anti-cheat detector. 

• Q4. Do you need different mouse settings (e.g., CPI) depending 
on the type of character or weapon you control in the game? 
(Yes: 5 / 29.4%) 
• Q5. Have you ever tried to mimic another player’s mouse set-
tings? (Yes: 11 / 64.7%) 
• Q6. Have you ever wanted more control over the transfer func-
tion of your mouse? (Yes: 9 / 52.9%) 
• Q7. Please select all the features below that you think are neces-
sary but not present in today’s gaming mice (transfer function 
optimization: 13, 76.5%) 

In summary, these results support our claim that modern pointing 
transfer functions need to be significantly improved to satisfy high-
performance users. Serious gamers want to be able to fine-tune 
their pointing transfer function (Q3, Q4, Q6) and seem to be highly 
interested in finding the optimal device settings that best suit them 
(Q2, Q5, Q7). Despite the general advantages of the acceleration 
function, we confirm once again that it is hardly used (Q1), probably 
because an acceleration function can be more severely disturbed 
by changes in CPI or polling rate than a constant function. 

2.3 Pointing Transfer Function for Gamers 
For enthusiastic gamers, especially in FPS games, the general con-
sensus of mouse settings is probably to "turn off mouse acceleration", 
which refers to a constant CD gain setting [1, 4]. The reason for 
this is probably to get rid of an extra variable – see Figure 6 for 
how easily nonlinear acceleration functions can be perturbed by 
external variables – to develop consistent muscle memory, which 
is crucial for better aiming performance. In particular, competitive 
FPS players have avoided the non-linear transfer function, who 
often use open-loop targeting strategies and rely on muscle mem-
ory for better repeatability of the action [1]. For precise movement, 
low gain is preferred [17], but because of the constant gain, they 
require a large mouse pad mousepad and large motion for specific 
actions such as a quick 180 degree turn in FPS games. 

While constant gain is preferred, attempts to apply nonlinear 
transfer functions have been advocated by a subset of gamers. If 
gamers could make a consistent open-loop action with the acceler-
ation transfer functions, they could have the best of both worlds: 
slow and precise movement, and fast and large sweep. The com-
munity has shown significant interest in a customizable transfer 
function. For example, Raw Accel GitHub repository has 200+ forks 
and 1.8k stars (as of late 2024), and a YouTube video5 about how to 
set up proper transfer function for Valorant gameplay gained nearly 
1 million views in less than two years. A variety of custom transfer 

5https://www.youtube.com/watch?v=u9auSOa3Hb0 

https://www.youtube.com/watch?v=u9auSOa3Hb0
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Figure 7: The custom-built mouse hardware design: Only the signal from front sensor was used in this study. 

functions have been tried, such as jump curve, linear curve, power 
curve, and exponential curves [16]. The most prominent approach 
may be a two-step approach, which maintains a constant gain at 
low speeds and applies an increased gain after a speed threshold. 

In summary, while academic research has demonstrated the per-
formance benefits of non-linear transfer functions, particularly 
mouse acceleration (increased gain at higher speeds) in general 
office scenarios [3, 6, 12, 15, 19], their advantages have not been 
thoroughly evaluated in high-performance gaming contexts. We 
believe that the absence of a sustainable and sufficiently customiz-
able transfer function technique has contributed significantly to 
this, and we hope that this study’s technique can be useful in future 
studies on transfer function design for high-performance users. 

3 Technique Implementation 

3.1 Overview 
Our transfer function technique is implemented directly in the 
firmware of an input device hardware. Among various indirect 
pointing devices, we demonstrate our technique on a computer 
mouse, the most widely used input device in competitive video 
games today [8]. To do this, rather than hacking the firmware 
of an existing commercial mouse, we decided to create a mouse 
hardware that we can fully control ourselves. This allows for a more 
rigorous technical evaluation that minimizes the influence of any 
possible confounding variables. The following sections describe 
the mouse hardware we implemented in detail, followed by the 
firmware uploaded to it. 

3.2 Custom Mouse Hardware 
The custom mouse used in this study was created based on 3D 
printer drawings and Arduino source code that were released as 
open source on the web6 . The resources are basically for those who 
want to implement a dual-sensor mouse, a special mouse with two 
optical sensors, and have been usefully utilized in recent HCI studies 
[8, 10, 17]. We implemented the dual-sensor mouse according to the 
guide and used only one of the two sensors, which is closer to the 
fingertip (see Figure 7). The total cost of producing one dual-sensor 
mouse in this study was about 100 USD [8]. Considering that gam-
ing mice costing several hundred dollars are popular on the market 
today, this is affordable for serious gamers to make one themselves. 

6https://github.com/SunjunKim/DualSensorMouse 

The following sections describe the hardware specifications of the 
mouse in more detail. 

3.2.1 Mouse Shell. The mouse shell shape mimics the Logitech G 
Pro Wireless, which is one of the most popular model for gamers. 
The shell was printed using a low-cost FDM printer (Bambu Lab 
X1-Carbon) in PLA material. 

3.2.2 Optical Sensor. For the sensor, we used PixArt PMW3389DM-
T3QU optical mouse sensor. The sensor has a maximum resolution 
of 16,000 CPI (count per inch), a tracking rate of 12,000 frames per 
second, and a tracking speed of up to 400 IPS (inch per second) with 
50G acceleration. The PMW3389 sensor is featured in high-end 
gaming mice such as the Razer DeathAdder Elite and the Cooler-
master MM710, and has been widely praised by competitive gamers 
for its performance. 

3.2.3 Microprocessor. As the brain of the mouse, the Espress ESP32-
S3 microprocessor handles sensor reading and communication with 
the host computer. The ESP32-S3 is a powerful microcontroller with 
a dual-core Xtensa LX7 CPU clocked at 240 MHz, 512 KB SRAM and 
4 MB flash memory. It also features a native USB interface, which 
is ideal for a mouse application. This is a 32-bit RISC architecture 
microprocessor, similar to other MCUs for gaming mice on the 
market today in 2024 (e.g., Nordic nRF52840, nRF52833, etc.). 

3.2.4 Firmware. We implemented the mouse driving firmware on 
Arduino IDE. The MCU reads the sensor displacement values from 
PWM3389 devices via SPI communication, processes sensor data, 
and sends the USB HID (human interface device) report to the 
host computer. To facilitate an advanced function, the USB HID 
descriptor was extended to report the X and Y displacements in 16-
bit (instead of the standard 8-bit), covering the range from -32,768 
to 32,767 counts. Debug and log messages are sent separately to 
the host computer via the USBCDC library, which acts as a virtual 
serial device. The device could run up to 1,000 Hz polling rate 
(bInterval=1 in a full-speed USB device), and we simulated the 
other polling rates by adding artificial delay in the loop. 

3.3 Hardware-Embedded Pointing Transfer 
Function Defined in Physical Units 

In our solution, let us denote the pointing gain function that users 
want to experience as 𝐺 (), where 𝐺 () is defined as a function of 
the physical speed 𝑣 (i.e., in 𝑚/𝑠 unit) that the mouse translates 

https://github.com/SunjunKim/DualSensorMouse
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array elements 
Desired gain function 

Figure 8: The way a custom desired gain function 𝐺 (𝑣 ) is defined and uploaded to the firmware as an array AG in our technique 

over the desk surface. Then, the speed of the pointer movement on 
the screen 𝑠 (i.e., in 𝑝𝑥 /𝑠 unit7) at the instant when the mouse is 
moving at speed 𝑣 should be determined as follows: 

𝑠 = 𝐺 (𝑣 ) · 𝑣 (1) 

Note that the unit of gain 𝐺 (𝑣 ) in this formulation is 𝑝𝑥 /𝑚. We 
assume that this desired gain function is discretized and uploaded 
to the firmware via serial communication. More specifically, if the 
theoretical maximum physical speed of the mouse is 𝑣max, the gain 
function discretized into 𝑁 points is uploaded to the firmware as 
the following array: 

 2AG = [𝐺 (0 𝑣max)  𝐺 (  𝑣max
, ), 𝐺 (  ), · · · , 𝐺 (𝑣max)] (2) 

𝑁 𝑁 

In this study, 𝑣max was determined to be 1 𝑚/𝑠 , referring to previous 
studies [2, 12]. 𝑁 was set to 100 so that the transfer function could 
be customized in sufficient detail (see Figure 8). 

The physical speed of the mouse 𝑣 can be precisely estimated 
by analyzing the optical sensor readings. If the polling rate of the 
mouse is expressed as 𝑃 (in Hz), then mouse sensor readings are 
obtained every 1/𝑃 seconds. If the values of the 𝑖 -th sensor reading 
are assumed to be 𝑐𝑥𝑖 and 𝑐𝑦𝑖 in the 𝑥 and 𝑦 axes of the sensor (unit: 
counts), respectively, then the estimated speed of the mouse 𝑣𝑖 at 
that moment is calculated as follows: √︃ 

2𝑃 𝑐𝑥  2+𝑖   𝑐𝑦 
𝑣𝑖 = 0.0254

𝑖 
 · (3) 

𝐶𝑃 𝐼 

Here, 𝐶𝑃𝐼 is the sensitivity setting of the mouse at the time the 
sensor reading was created, and 0.0254 is a proportional constant 
introduced to convert inches to meters. Finally, the gain 𝐺𝑖 to be 
applied to the 𝑖 -th sensor reading (𝑐𝑥𝑖 , 𝑐𝑦𝑖 ) is the linearly interpo-
lated value at the fractional index corresponding to 𝑣𝑖 in the array 
of gains in Equation 2. If 𝑣𝑖 is greater than 𝑣max, 𝐺𝑖 is simply set to 
𝐺 (𝑣max). 

According to the definition of the gain function in Equation 
1, the pointer speed on the screen 𝑠𝑖 that should be generated 
correspondingly from the 𝑖 -th sensor reading is as follows: 

𝑠𝑖 = 𝐺𝑖 · 𝑣𝑖 (4) 

7We use 𝑝𝑥/𝑠 here because the size of screen elements is defined in pixels and manip-
ulated by a pointer with pixel-level precision. In this case, we believe that defining 
the pointer speed in physical units is less meaningful because the physical screen size 
can vary while maintaining a field of view (FoV) similar to the eyes (e.g., the same 
screen content rendered on a laptop screen, desktop monitor, and projector at different 
distances). Further rationale will be presented in the Discussion and Limitation section. 

Since each sensor reading occurs over a period of 1/𝑃 , if we want 
to move the pointer at an average speed of 𝑠𝑖 as above, the corre-
sponding displacement of the pointer 𝑑𝑖 on the screen must be: 

𝑑𝑖 = 
𝑠𝑖 

𝑃 
(5) 

From the equations presented above, we were able to understand 
how much the pointer should be displaced on the screen for each 
sensor reading to realize the gain function 𝐺 desired by users. In 
particular, since the influence of hardware settings such as CPI or 
polling rate is automatically compensated internally in the firmware 
(Equation 3), if the above equations can be actually implemented, 
users can always experience the same transfer function in physical 
units regardless of hardware setting perturbations. 

3.4 OS Gain Cancellation 
The process by which the pointer is moved in today’s OSs is as 
follows. First, for the 𝑖 -th sensor reading step, the input device sends 
an Human Interface Devices (HID) report in the form of an integer 
vector ℎ𝑖 = (ℎ𝑥𝑖 , ℎ𝑦𝑖 ) to the OS through USB Bus. Next, the OS 
calculates the magnitude of the report |ℎ𝑖 | and multiplies it by the 
corresponding OS-native gain 𝐺OS to determine the required pixel 
displacement (Δ𝑥𝑖 , Δ𝑦𝑖 ) of the pointer. Finally, the displacement is 
reflected in the pointer position on the screen. The relationship 
between the pointer displacement vector and the HID report vector 
is expressed as follows: 

(Δ𝑥𝑖 , Δ𝑦𝑖 ) = 𝐺OS ( |ℎ𝑖 |) · (ℎ𝑥𝑖 , ℎ𝑦𝑖 ) (6) 

One thing to note here is that depending on the OS, the native 
gain function may compute the magnitude of the HID report it 
takes as input in a way other than the familiar Euclidean norm. 
For example, on Windows, |ℎ𝑖 | is computed in a unique way: 

Sensor reading 

HID report 

Figure 9: Sensor reading and HID report should be parallel 
to avoid jittering 
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Figure 10: The process of of obtaining the array A𝑥 

max(ℎ𝑥𝑖 , ℎ𝑦𝑖 ) + min(ℎ𝑥𝑖 , ℎ𝑦𝑖 )/2 [2]. In this study, we assume that 
all magnitude expressions written in the 𝐺OS function represent 
magnitudes computed according to the method of the target OS. 

We assume that 𝐺OS is uploaded to the mouse in the form of an 
array, just like the user-defined gain 𝐺 . This is a possible assumption, 
since the native transfer functions of most OSs have already been 
precisely measured in previous studies and made public [2]. If we 
denote the maximum HID report magnitude we consider as ℎmax, 
the 𝐺OS array is expressed as follows: 

AOS = [𝐺OS (0
ℎmax), 𝐺OS (  2ℎmax),  

𝐺OS ( ), · · · , 𝐺OS (ℎmax)] (7) 
𝑁OS 𝑁OS 

The divisor 𝑁OS is set to 1,000, 𝐺OS (0) is simply assumed to be 0, 
and ℎmax was set to 500. 

In the previous section, we derived the on-screen pointer dis-
placement 𝑑𝑖 that should occur from the 𝑖-th sensor reading, which 
should be related to (Δ𝑥𝑖 , Δ𝑦𝑖 ) and 𝐺OS as follows: √︃ 

2𝑑𝑖 = Δ𝑥  2+𝑖  Δ𝑦  
𝑖 = 𝐺OS ( |ℎ𝑖 |) · |ℎ𝑖 | (8) 

If we can find ℎ𝑖 that satisfies the above equation, we can realize 
the desired pointer movement 𝑑𝑖 . 

To avoid users noticing directional jittering in pointer movement, 
(ℎ𝑥𝑖 , ℎ𝑦𝑖 ) should always be set parallel to the sensor reading 𝑐𝑖 = 
(𝑐𝑥𝑖 , 𝑐𝑦𝑖 ). As a result, (ℎ𝑥𝑖 , ℎ𝑦𝑖 ) should always be determined by 
multiplying (𝑐𝑥𝑖 , 𝑐𝑦𝑖 ) by a constant 𝑘𝑖 , as follows (see Figure 9): 

(ℎ𝑥𝑖 , ℎ𝑦𝑖 ) = 𝑘𝑖 · (𝑐𝑥𝑖 , 𝑐𝑦𝑖 ) (9) 

Here, (𝑐𝑥𝑖 , 𝑐𝑦𝑖 ) are known values measured from the sensor and 
𝑘𝑖 is an unknown value that we need to determine for each 𝑖 -th 
sensor reading. According to the Equation above, if the magnitude 
of (𝑐𝑥𝑖 , 𝑐𝑦𝑖 ) computed by the OS-specific method is |𝑐𝑖 |OS, and the 
Euclidean norm of (𝑐𝑥𝑖 , 𝑐𝑦𝑖 ) is |𝑐𝑖 |E, Equation 8 can be reformulated 
as follows: 

𝑑𝑖 = 𝐺OS (𝑘𝑖 · |𝑐𝑖 |OS) · 𝑘𝑖 · |𝑐𝑖 |E (10) 

If we substitute 𝑘𝑖 · |𝑐𝑖 |OS with 𝑥 , the solution to Equation 10 is 
basically the 𝑥 -coordinate of the intersection point between the 

following two functions on the 𝑥𝑦 coordinate plane: 

𝐾 |𝑐  |OS
𝑦 = 𝑖  𝑑𝑖 

𝑓1 (𝑥 ) = and 𝑦 = 𝑓2 (𝑥 ) = 𝐺OS (𝑥 ) where 𝐾 = 
𝑥 |𝑐𝑖 |E

(11)
 

 
To solve this, we apply a computational method. First, we gradually 
increase 𝑥 from 0 in small intervals and find the point where the 
sign of (𝑓1 (𝑥 )−𝑓2 (𝑥 )) changes. In this process, 𝐺OS for 𝑥 was linearly 
interpolated if it did not exist in the array of Equation 2. 

If 𝑥 before the sign change is 𝑥1 and 𝑥 after the sign change is 𝑥2, 
we obtain the 𝑥 -coordinate of the intersection point between the 
line segment connecting the points [𝑥1, 𝑓1 (𝑥1)] and [𝑥2, 𝑓1 (𝑥2)] and 
the line segment connecting the points [𝑥1, 𝑓2 (𝑥1)] and [𝑥2, 𝑓2 (𝑥2)] 
as the final solution to Equation 11 (see Figure 10). 

If the solution of Equation 8 obtained for a particular 𝐾 is 𝑥∗ 𝐾 , 
we upload the following array to the firmware: 

∗ ∗ ∗ ∗ A𝑥 = [𝑥 , 𝑥 𝐾 · , 𝑥  ·max 2𝐾max , ·  ,  0 𝑥 ] 𝐾max 
(12) 

𝑁𝑑 𝑁𝑑 

Here, 𝐾max is the maximum value of the desired 𝐾 , which is set to 
500, sufficiently large. The divisor 𝑁𝑑 is also set to 1,000. However, 
if the overall magnitude of the OS-native gain is very low, the 
intersection may occur at very large 𝑥 , and as a result, 𝐾max may have 
to be increased further. The 𝑥∗ 0 , which represents the intersection 
of 𝑦 = 0 and 𝑦 = 𝐺OS (𝑥 ), was assumed to be 0 because 𝐺OS (0) was 
also assumed to be 0 (see Equation 7). 

Once we have uploaded the three arrays AG, AOS, A𝑥 , we are 
ready to cancel out the impact of that OS-native gain and move 
the pointer as we want, simply by controlling the HID report sent 
by the device firmware, without installing any additional client 
software. We assume that we have precomputed [AOS, A𝑥 ] array 
pairs for all native function settings of a particular OS. In this study, 
we have verified that the memory size of our custom mouse (512 
KB) allows us to store in the firmware the [AOS, A𝑥 ] array pairs 
computed for all 22 native settings of Windows. The next section 
presents the final algorithm on how the firmware actually generates 
HID reports and manages remainders based on all the uploaded 
information. 
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Figure 11: Block diagram of the proposed algorithm 

3.4.1 HID Reporting Algorithm. This section describes in chrono-
logical order the process by which the firmware creates a HID 
report (ℎ𝑥, ℎ𝑦). First, the firmware calculates the desired pointer 
displacement 𝑑𝑖 from the 𝑖 -th sensor reading using Equation 3 to 5. 
Then, the firmware calculates the desired pointer movement vector 
(Δ𝑥𝑖 , Δ𝑦𝑖 ) parallel to the sensor reading vector (𝑐𝑥𝑖 , 𝑐𝑦𝑖 ) as follows: 

𝑑𝑖 (Δ𝑥𝑖 , Δ𝑦𝑖 ) ← (𝑐𝑥 𝑦
𝑐𝑥 , 𝑐𝑦 𝑖 , 𝑐 𝑖 ) (13) | ( 𝑖 𝑖 ) |E 

If the remainder of the pointer movement vector that could not be 
processed in the previous sensor reading is (Δ𝑥𝑟 , Δ𝑦𝑟 ), it is added 
to Δ𝑥𝑖 and Δ𝑦𝑖 to be processed in the current step: 

𝑑𝑖(Δ𝑥𝑖 , Δ𝑦𝑖 ) ←  (𝑐𝑥𝑖 , 𝑐𝑦𝑖 ) + (Δ𝑥𝑟 ) (14) | (𝑐𝑥𝑖 ,  , Δ𝑦
𝑐𝑦

𝑟 
𝑖 ) |E 

The firmware then updates the desired pointer displacement vari-
able 𝑑𝑖 as follows, to include remainder: 

𝑑𝑖 ← | (Δ𝑥𝑖 , Δ𝑦𝑖 ) |E (15) 

Next, the firmware computes 𝐾 and retrieves the 𝑥∗ value corre-
sponding

𝑖

 to its fractional index from A𝑥 array (via interpolation): 
| (𝑐𝑥

  𝑖 , 𝑐𝑦𝑖 ) |OS 𝑑
𝐾

𝑖 ← and  ∗ 
𝐾 𝑁𝑑 

𝑥 ← A  [ ] (16) | (𝑐𝑥𝑖 , 𝑐𝑦 𝑖 𝑥

𝑖 ) |E 𝐾max 

Following the original definition of 𝑥 , the variable 𝑘𝑖 is computed 
as follows: ∗ 𝑥 

𝑘
𝑖 

𝑖 ← (17) | (𝑐𝑥𝑖 , 𝑐𝑦𝑖 ) |OS 

Finally, according to Equation 9, the HID report that the firmware 
needs to send to the OS is calculated as follows: 

(ℎ𝑥𝑖 , ℎ𝑦𝑖 ) ← 𝑘𝑖 (𝑐𝑥𝑖 , 𝑐𝑦𝑖 ) (18) 

However, since today’s OSs only accept HID reports with inte-
ger components, the HID report vector computed above is passed 
through the floor function ⌊𝑥 ⌋ and being transmitted the OS: 

(ℎ𝑥𝑖 , ℎ𝑦𝑖 ) ← (⌊ℎ𝑥𝑖 ⌋, ⌊ℎ𝑦𝑖 ⌋) (19) 

The loss of pointer displacement caused by the above flooring can 
be calculated using array AOS based on Equation 6 as follows and 
it is set as remainder for the next sensor reading: 

𝑁OS | (ℎ𝑥  , ℎ𝑦  ) |OS (Δ𝑥𝑟 , Δ𝑦𝑟 ) ← (Δ𝑥𝑖 , Δ𝑦  − 𝑖AOS [ 𝑖

𝑖 ) ] (ℎ𝑥𝑖 , ℎ𝑦
ℎ

𝑖 ) (20) 
max 

The series of algorithms from Equations 13 to 20 are performed 
for each sensor reading (see Figure11 for a block diagram). 

4 Technical Evaluation 
In this section, we rigorously evaluate whether our proposed tech-
nique has comparable robustness and precision to conventional 
technique. In particular, we follow a purely quantitative approach 
rather than relying on subjective evaluations from users. We col-
lect the physical speed of the device, HID reports, and the pointer 
position changes on the screen during random mouse movements 
to evaluate how accurately and precisely our mouse implements 
the desired gain function. 

4.1 Method 
4.1.1 Design. The experiment is conducted independently for both 
the baseline (or Baseline) and our technique (or Ours). Both exper-
iments are performed with the same mouse, and in the Baseline 
condition, the mouse’s sensor readings are directly sent to the OS as 
HID reports, just like a conventional mouse. In Ours, the algorithm 
proposed in this study is implemented in the mouse firmware. 

The Baseline experiment followed a 6×2×2 full factorial design, 
and the independent variables and their respective levels are: 
• Native Function: C2, A2, C6, A6, C10, A10 
• CPI: 400 or 800 
• Polling Rate (in Hz): 125 or 250 

Native Function refers to the native gain function setting that the 
OS (Windows) has while the experiment is running, C refers to the 
constant function, A refers to the acceleration function, and the 
following number refers to the slider position in the control panel 
(see Figure 12). 

The experiment for Ours follows a 4×3×6×2×2 full factorial 
design, and the independent variables and their respective levels 
are as follows: 
• Shape: Constant, Sigmoid, Sine, or Zigzag 
• Scale: Low, Mid, High 
• Native Function: C2, A2, C6, A6, C10, A10 
• CPI: 400 or 800 
• Polling Rate (in Hz): 125 or 250 

Shape refers to the shape of the gain function that we want to realize 
with our technique. Scale represents the amplitude of the desired 
gain function. Low, Mid, and High conditions were determined with 
reference to the range of A2, A6, and A10, respectively. All desired 
gain functions resulting from each Shape-Scale combination are 
plotted in Figure 13. 
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Figure 12: Six levels of Native Function used in Baseline 

In addition to the above experiments, we also conducted addi-
tional experiments on Ours technique, where the device’s CPI and 
polling rate were randomly changed once per second during mouse 
movement under one of the following four conditions: 
[CPI, Polling Rate (Hz)]=[400, 125], [400, 250], [800, 125], or [800, 250] 

In this additional experiment, the Shape and Scale of the desired 
gain function were fixed to Sigmoid_Mid, respectively, and the Na-
tive Function was fixed to the A6 condition. This experiment allows 
us to evaluate whether the desired gain function can be robustly 
reproduced by our technique under unintended perturbations of 
hardware settings, such as CPI or polling rate. 

4.1.2 Apparatus and Data Acquisition. The same custom mouse 
described in Section 3.2 was used in the experiments. Arrays AOS 

and A𝑥 for each Native Function were prepared in advance and 
uploaded to the custom mouse firmware. For significantly low Na-
tive Gains (C2 and A2), 𝐾max and 𝑁𝑑 of A𝑥 array was increased to 
10,000 and 20,001, respectively. The experiments were performed 
on a single desktop PC (AMD Ryzen 5 7500F, 3,701 MHz, 32GB 
RAM, Windows 10), equipped with a 4K display (LG 27UP850N, 
3840 × 2160, 69.7×39.2 cm) to observe pointer displacement over 
as wide a range as possible. 

The mouse reads the sensor values at 125 Hz or 250 Hz (matched 
to the Polling Rate of each condition) and sends the information 
to the PC in two paths: via serial and via USB HID mouse report. 
Through the serial communication, we collected three pieces of 
mouse data for each sensor reading, (1) the physical speed of the 
mouse 𝑣 , (2) the HID report sent to the OS (𝑟 𝑥𝑖 , 𝑟𝑦𝑖 ), and (3) the 
microprocessor timestamp. With the USB HID mouse report, OS 
translated the reported data to the cursor movement. A Python 

Figure 13: Twelve Scale×Shape combination gain functions 
used in Ours 

script based on the pynput.mouse library detected the coordinates 
of the pointer on the screen on cursor move events and recorded the 
PC timestamp at the event. The baseline implementation took an 
average of 155 µs data processing time from sensor data acquisition 
to HID report generation, and our technique took an average of 
280 µs, with an additional 130 µs of gain cancellation algorithm 
computation time. 

4.1.3 Procedure. The first author of this paper conducted all the 
experiments. The experimenter randomly moved the mouse on 
the desk during data collection for each experimental condition 
of Baseline and Ours. To ensure that the mouse moved similarly 
across all conditions, a simple visualization was provided to the ex-
perimenter in real time. The visualization consisted of two progress 
bars. One bar showed whether the experimenter’s movements suf-
ficiently covered a wide range of mouse speeds. While most con-
ditions had a desired speed range of 0 to 1 m/s, some conditions 
were measured only up to speeds lower than 1 m/s, as shown in 
Table 2. This is because, for gain functions with a large average 
scale, the pointer continues to hit the screen edge above a certain 
device speed. Furthermore, this can reduce experimenter fatigue 
by minimizing the time spent in an excessively fast speed range. 
The second bar showed whether the experimenter’s movements 
sufficiently covered a wide range of mouse movement directions (0 
to 360°). Data collection was automatically terminated only when a 
sufficient number of data points (𝑁 =300) were collected for each 
speed and direction bin, such that all progress bars reached 100%. 

This experiment took 0.8 hours for Baseline and 9.6 hours for 
Ours to complete, during which the mouse actually moved for a total 
of 0.15 hours and 1.6 hours, respectively. The separate experiment 
for the Ours condition, where hardware settings were changed 
randomly, took 5 minutes to complete, during which the mouse 
actually moved for a total of 0.85 minutes. 

4.1.4 Performance Evaluation. As a result of the experiment, we 
quantify how accurately the desired gain function is implemented 
as intended. We first multiply the measured mouse speed ˆ 𝑣 in the 
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Figure 14: This figure shows how the values of 𝑑intend and 𝑑screen are accumulated within a time window of 16 ms. 

firmware by the true desired gain 𝐺 (𝑣) to obtain the intended 
pointer displacement, 𝑑intend. For Baseline conditions, 𝑑intend is ob-
tained by multiplying the magnitude of the measured sensor reading 
count | (𝑐𝑥 , 𝑐𝑦) |E by the matching OS native gain 𝐺OS ( | (𝑐𝑥, 𝑐𝑦) |OS). 

Then, we obtain the actual displacement of the pointer 𝑑screen on 
the screen at the instant and compare it to 𝑑intend. Next, we also tried 
a method that sacrificed some external validity: we computed the 
predicted pointer displacement 𝑑predict on the screen by multiplying 
each raw HID report from the mouse by a known OS gain, rather 
than measuring it directly from the movement of the pointer on 
the screen: 𝑑predict = | (𝑟 𝑥 , 𝑟𝑦) |E ·𝐺OS ( | (𝑟 𝑥, 𝑟𝑦) |OS). Ideally, the pairs 
𝑑intend and 𝑑screen, and the pairs 𝑑intend and 𝑑predict should show high 
correlation. In Baseline condition, since the sensor reading (𝑐𝑥 , 𝑐𝑦) 
and the HID report (𝑟 𝑥, 𝑟𝑦) are always the same, 𝑑predict and 𝑑intend 

are also always the same. 

4.2 Result 
4.2.1 Estimating 𝑑screen. There may be a delay between the pointer 
coordinate data and the data sent from the mouse firmware (such 
as mouse speed and HID reports). The delay for each condition was 
estimated from the lagged cross-correlation between the pointer 
coordinates and the HID report data after resampling. On average, 
a time delay of 2.3 ms (𝜎 = 2.2) was observed (the firmware data 
was lagging) and the two data were synchronized for each con-
dition. When divided into two groups, Baseline conditions and 
Ours conditions, the average time delay was 3.3 ms (𝜎 =1.9) and 

Table 2: In some conditions, a maximum device speed lower 
than 1 m/s was considered for measurements. 

Condition Gain Function 
Maximum Device Speed (m/s) 
400 CPI 800 CPI 

Baseline C6 1.00 0.82 

Baseline A6 0.66 0.36 

Baseline C10 0.55 0.28 

Baseline A10 0.41 0.24 

Ours Constant-High 0.55 0.55 

Ours Sigmoid-Mid 0.69 0.69 

Ours Sigmoid-High 0.53 0.53 

Ours Sine-High 0.91 0.91 

Ours Zigzag-Mid 0.72 0.72 

Ours Zigzag-High 0.45 0.45 

2.2 ms (𝜎 = 2.2), respectively. The pointer coordinate data is then 
converted into pointer displacement (𝑑screen) data by subtracting 
adjacent rows. Meanwhile, when the pointer contacted the edge 
of the screen, the pointer displacement due to the HID report may 
not have been fully achieved, which could act as significant noise 
in our technical evaluation. Therefore, data measured while the 
pointer was contacting one of the screen edges and data measured 
adjacent to and before and after those contacts were considered 
outliers and were excluded from the analysis. In Baseline, 1,029 
rows out of 32,874 rows were removed (3.13%), and in Ours, 16,640 
rows out of 350,454 rows were removed (4.61%). 

4.2.2 Agreement Between |𝑑intend |𝑊 and |𝑑screen |𝑊 . Since the pointer 
coordinate data and the data transmitted from the firmware are 
measured at different sampling rates, comparable (𝑑intend, 𝑑screen) 
pairs may not always exist. Therefore, instead of doing an element-
wise comparison of 𝑑intend and 𝑑screen, we focus on the fact that the 
𝑑intend data sampled at a high frequency is accumulated to determine 
the 𝑑screen sampled at a low frequency. We divided the 𝑑intend and 
𝑑screen data into 𝑊 -ms long time windows evenly and then calcu-
lated |𝑑intend |𝑊 and |𝑑screen |𝑊 , which are the sums of 𝑑intend and 𝑑screen, 
within each time window (see Figure 14). Considering the sampling 
rate at which pointer coordinates are collected (125 Hz or 250 Hz), 
𝑊 is set to 16 ms to ensure that at least two pointer coordinates 
can be included per time window to obtain the displacement. 

Two metrics are introduced to evaluate the agreement between 
|𝑑intend |𝑊 and |𝑑screen |𝑊 . The first is the correlation between the two 
values. Linear regression is performed on all (|𝑑intend |𝑊 , |𝑑screen |𝑊 ) 
points for each condition, and the regression equation and coeffi-
cient of determination (𝑅 2) are analyzed. The second is the differ-
ence between |𝑑intend |𝑊 and |𝑑screen |𝑊 , i.e. the error in implementing 
the desired pointer displacement. The mean absolute error (MAE, 
unit: pixels) is computed for all (|𝑑intend |𝑊 , |𝑑screen |𝑊 ) pairs. 

As a result, the 𝑅 2 and MAE of Baseline and Ours did not show 
significant differences, as follows: Baseline 𝑅 2=0.9666 (𝜎 =0.0400), 
MAE=5.0020 (𝜎 =5.8621), Ours 𝑅 2=0.9692 (𝜎 =0.0341), MAE=4.6514 
(𝜎 =4.4401). The mean slope and intercept of the regression equa-
tion were as follows for each technique: Baseline slope 0.9644 
(𝜎 =0.0361) and intercept 3.6276 (𝜎 =4.6703), Ours slope 0.9436 (𝜎 =0.0 
388) and intercept 4.7642 (𝜎 =4.4972). Figure 15 show the main ef-
fects of each independent variable on 𝑅 2 and MAE. For Baseline 
and Ours, we randomly sampled the same number of (|𝑑intend |𝑊 , 
|𝑑screen |𝑊 ) pairs, uniformly across all conditions, and plotted their 
scatter plots in Figure 16, together with the additional results when 
𝑊 is increased to 256 ms. 
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Figure 15: 𝑅 2 and MAE of Baseline and Ours conditions obtained as a result of technical evaluation 
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Figure 16: Scatter plots drawn by randomly sampling the same number of (|𝑑intend |𝑊 , |𝑑screen |𝑊 ) or (𝑑intend, 𝑑predict) pairs for Baseline 
and Ours conditions 
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Using the same method, we also analyzed data measured un-
der the condition where the CPI and polling rate were randomly 
changed every second. As a result, the 𝑅 2 and MAE were still 
comparable to the Baseline, as follows: 𝑅 2 =0.9731 (𝜎 =0.0190) 
and MAE=5.6236 (𝜎 =3.2210). There was no noticeable anomaly in 
pointer movement at the moment when the hardware settings were 
automatically changed. 

4.2.3 Agreement Between 𝑑intend and 𝑑predict. To examine the corre-
lation between 𝑑intend and 𝑑predict, timestamp synchronization was 
not required, as both were calculated within the same serial port 
data packet. Therefore, we compared individual (𝑑intend, 𝑑predict) pairs 
without a window-based accumulation. Additionally, since HID 
reports are unaffected by whether the pointer reaches the screen 
edge, no post-processing was performed for the calculation of 𝑑predict. 
For each condition, a linear regression analysis was performed on 
the (𝑑intend, 𝑑predict) data points, and MAE between 𝑑intend and 𝑑predict 
was also calculated. Note that these analyses were not conducted 
for Baseline, as 𝑑intend and 𝑑predict are always identical in that case, 
making the analyses irrelevant (i.e., 𝑅 2 = 1.0 and MAE=0). 

As a result, 𝑅 2 and MAE in Ours conditions were obtained as 
follows: 𝑅 2=0.9951 (𝜎 =0.0196), MAE=0.4060 (𝜎 =0.3155). The aver-
age slope and intercept of the linear regression equations were 
𝑅 2=1.0004 (𝜎 =0.0046) and MAE=0.0192 (𝜎 =0.0502), respectively. 
The results are also shown in Figures 15 and 16, alongside the 
𝑑intend vs. 𝑑screen results. We also analyzed data measured under the 
condition where the CPI and polling rate were randomly changed 
every second. The 𝑅 2 and MAE of Ours condition were: 𝑅 2=0.9998 
(𝜎 =0.00005) and MAE=0.4891 (𝜎 =0.0197). 

5 Discussion and Limitations 
In the technical evaluation, we found that the performance of Ours 
in implementing the desired gain function was indistinguishable 
from Baseline in terms of pointer displacement measured directly 
on the screen (𝑑screen). We speculate that the common noise observed 
in the scatter plots of both Baseline and Ours conditions (Figure 
16) is because the measurement delay between 𝑑intend and 𝑑screen 

slightly varies in real time during a single measurement even after 
pre-synchronization. Such stochastic noise can cause the number of 
data points included in the 16 ms time window to exceed or fall short 
by one, which can lead to inaccurate calculations of |𝑑intend |𝑊 and 
|𝑑screen |𝑊 , thereby lowering 2 𝑅  and increasing MAE. In particular, 
such noise can be amplified proportionally to the pointer speed, 
and we actually observed that an increase in the overall magnitude 
of the gain handled in both Baseline and Ours conditions leads 
to a decrease in 2  𝑅 and a increase in MAE (see A10 condition and 
High condition in Figure 15). When the window size was increased 
to 256 ms, the noise in the scatterplot spread less in proportion to 
the displacement magnitude, which also supports that it originates 
from the measurement delay. 

The results of the correlation analysis between 𝑑intend and 𝑑predict, 
which are relatively free from delay issues because the analysis was 
performed only with data transmitted from the device firmware, 
showed that Ours condition had additional sub-pixel level errors 
compared to Baseline condition. In Ours condition, the error be-
tween 𝑑intend and 𝑑predict showed an increasing trend as the overall 
scale of the gain function grew, while still maintaining sub-pixel 

level. One important point to note is that this sub-pixel error does 
not imply the existence of probabilistic jitter in the pointer’s move-
ment trajectory. This error simply means that the gain function 
realized is not exactly the same as the intended gain function due 
to the approximation error present in the tables uploaded to the 
device firmware (A𝑥 , AOS). We expect that the ability to implement 
any custom gain function with sub-pixel level pointer displace-
ment errors will satisfy most high-performance users. Moreover, 
the errors in our technique can be further reduced by increasing 
the resolution of the tables being uploaded (i.e., increasing 𝑁𝑑 or 
𝑁𝑥 ), although this would require additional memory in the device 
firmware. However, we acknowledge that future research needs to 
more closely explore what level of sub-pixel error is sufficient to 
provide users with adequate subjective satisfaction. 

The most important breakthrough in this study is the compu-
tation of a lookup table, A𝑥 (see Equation 12), uploaded to the 
firmware that tells us which HID reports to send to generate the 
desired pointer displacement while canceling out the influence of 
the OS-native gain. A𝑥 is constructed by finding the intersection of 
two functions, 𝑦 = 𝐾 and 𝑦 = 𝐺𝑥 OS (𝑥 ). One might wonder if there 
are cases where it is impossible to compute A𝑥 . The answer is yes, 
and there are two possible cases: when 𝐺OS (𝑥 ) is 0 in some region, 
or when 𝐺OS (𝑥 ) is defined to only accept inputs below a certain 
maximum. As far as we know, modern OS-native gain functions do 
not fall into either of these cases. Rather, we think that the most re-
alistic and critical challenge in computing A𝑥 comes when 𝐺OS (𝑥 ) 
has a very large dynamic range. Then, the intersection point 𝑥 ∗ of 
the two functions will also vary over a large range, and as a result, 
the size of the table to be uploaded to the firmware may become 
excessively large. If such a case occurs, instead of uploading the 
raw table as it is, we should try to approximate it by uploading only 
the coefficients of the polynomial fit function or by reducing the 
size of the table and relying on interpolation. Fortunately, we think 
that such problems rarely occur under the dynamic range of the 
common OS-native gain functions today. 

Even if the native gain functions are not known in advance, it is 
not difficult to accurately measure them [2]. By repeatedly sending 
a specific HID report to the OS, the displacement of the pointer can 
be measured, and the corresponding OS gain can be determined. 
The HID reports can be generated using a separate microprocessor 
[2] or, for a specific OS (e.g., Linux), can be emulated by software. 
In our technique, it is possible to add a feature to the firmware of 
the custom mouse that allows it to switch into a so-called “gain 
measurement mode”, which repeatedly sends HID reports to the 
OS. Our pilot implementation of this idea showed that for a single 
OS gain function setting, it took a total of 3.6 minutes to accurately 
measure the gain function up to a maximum magnitude range of 
512 in the HID report (17 repetitions per magnitude, with steps 
of 7). Since the OS gain function only needs to be measured once 
per setting, we believe that this will not be a big burden for high-
performance users. 

In this study, we defined the transfer function as a function of 
physical mouse speed (𝑚/𝑠 ) and on-screen pointer speed (𝑝𝑥 /𝑠 ), so 
the gain unit we used is 𝑝𝑥 /𝑚. Unlike us, most previous studies de-
fined the gain in the transfer function as unit-less [2, 6], using both 
the device speed and the pointer speed in physical displacement 
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units. The concept of unit-less gain makes sense when considering 
unified physical contexts where the display and interaction space 
are tightly coupled to the user’s physical environment, such as 
direct manipulation and immersive VR setups. In the context of 
gaming on an indirect display, however, the interaction elements 
on the display are primarily defined in pixel terms, controlled by 
pixel-precise pointers. In addition, the apparent angular size of the 
displayed element is subject to change by the distance between 
the eyes and the screen. Therefore, we believe that the absolute 
size of objects on screen is less significant. For example, Kim et al. 
[9] conducted a study to measure first-person shooter game scores 
while varying the display size, while maintaining equivalent FoV 
(field of view, unit:◦), latency, brightness, and display resolution. 
Except for one condition where the display size is too small (13") 
and too close to the eyes, the game score remained at the same level 
(∼1% difference) while the display size varied in the range from 26" 
to 65". This is equivalent to tripling the gain in physical size, but the 
effect was minimal. This result suggests that the unit of the transfer 
function in this context should be ◦/𝑚 as the function of the user’s 
FoV and mouse displacement, rather than the unitless gain. For 
future reference, one pixel in our study corresponds to 0.01486◦ 
(3,840×2,160 resolution, 69.7×39.2 cm display placed at 70 cm from 
the user’s eye). Our results in 𝑝𝑥 /𝑚 can be easily converted to ◦/𝑚 
by multiplying the factor of 0.01486. 

On the other hand, readers may wonder how our technique can 
be applied to some commercial games that bypass the OS transfer 
function and force the use of their own in-game transfer function. 
In such games, input device control sometimes leads to changes 
other than pointer movement. For example, in FPS games, moving 
the input device usually changes the character’s first-person view 
camera orientation, not the position of a pointer on the screen. In 
order to utilize our technique in such cases, the game system should 
be considered as a separate independent OS and the following 
two modifications should be made: (1) re-define the units of gain 
function as the units of in-game changes caused by input (e.g., ◦/m 
in FPS games)[1], and (2) precisely measure the transfer functions 
embedded in the game system. Since the in-game transfer functions 
of popular commercial games are generally already measured and 
known by players8 , we expect that these modifications can be made 
easily in most cases. Except for these modifications, all steps in 
Section 3 can be performed in the same way. 

Although our technique significantly reduces the burden of trans-
fer function customization and maintenance compared to existing 
solutions, there is still one thing that users must do manually to 
use our technique: informing the device firmware of the OS gain 
function setting (i.e., the position of the slider in the control panel). 
For example, this can be done by pressing buttons on the device to 
adjust the firmware settings, aligning them with the OS settings. 
Alternatively, to minimize manual effort, we can pre-define stan-
dard OS settings to use the device and require users to adhere to 
them (e.g., set the slider to the center position). If users are willing 
to install additional software, a simple client application could read 
the OS setting registry values when the device is connected and 
automatically send them to the device via the serial port. 

8Such as Counter-Strike: Global Offensive (CS:GO), Rainbow Six Siege, and Valorant 

Finally, we believe that the technique we proposed could be 
commercialized in the near future. Compared to existing mouse 
implementations on the market, our technique additionally requires 
about 177 KB of memory to store the entire lookup table pre-loaded 
and ≈130 𝜇𝑠 of computation time. In our case, the MCU we used 
was sufficient to embed the entire lookup table on the chip and 
easily achieved the 1,000 Hz rate in our test. Alternatively, it is also 
possible to connect an additional memory chip that costs only a 
fraction of a dollar to support an existing microprocessor with lim-
ited on-chip memory. Or, it is possible to store only one lookup table 
at a time (using only 5 KB of SRAM) on demand when implement-
ing the technique on existing mouse hardware. Meanwhile, note 
that we built the mouse hardware following Dual Sensor Mouse 
project [8, 10], and the modified 3D model and gain-cancelling 
source code are available online9 This allows interested researchers 
and users to build the mouse themselves without waiting for mouse 
manufacturers to incorporate our transfer function technique. 

6 Conclusion 
The way pointing transfer functions are implemented in today’s 
operating systems makes it difficult to satisfy users’ demands for 
extreme high performance due to the following two problems: (1) 
the transfer functions cannot be customized in detail, and (2) un-
intended perturbations of hardware settings or OS-native transfer 
function settings cause significant disruptions in users’ transfer 
function experience. The hardware-embedded pointing transfer 
function technique proposed in this study solves both problems by 
directly defining the transfer function in physical units in the de-
vice’s firmware and embedding a special algorithm in the firmware 
that cancels out the influence of the OS-native function. In particu-
lar, our technique does not require separate software installation, 
unlike existing solutions, and supports all OS types. In a rigorous 
technical evaluation study using a custom-built mouse hardware, 
we evaluated and compared the conventional technique and our 
technique to see whether the intended pointer displacement based 
on the desired transfer function was actually accurately realized 
on the screen. As a result, we demonstrated that our technique has 
comparable accuracy and reliability to the conventional method 
in realizing custom transfer functions of various shapes and scales 
under various CPI and polling rate settings. 
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